def init_toy_data(): np.random.seed(1) X = 10 * np.random.randn(num_inputs, input_size) y = np.array([0, 1, 2, 2, 1]) return X, y
时间: 2024-04-17 11:29:22 浏览: 152
这是一个函数 `init_toy_data`,它用于生成一个玩具数据集。在函数中,首先设置随机种子,然后使用 `np.random.randn` 生成一个形状为 `(num_inputs, input_size)` 的随机数矩阵 `X`。接下来,创建一个形状为 `(5,)` 的数组 `y`,其中包含了标签数据。最后,函数返回生成的数据集 `X` 和标签 `y`。
相关问题
class TwoLayerNet: def __init__(self, input_size, hidden_size1,hidden_size2, output_size, weight_init_std=0.01): # 初始化权重 self.params = {} self.params['W1'] = weight_init_std * \ np.random.randn(input_size, hidden_size1) self.params['b1'] = np.zeros(hidden_size1) self.params['W2'] = weight_init_std * \ np.random.randn(hidden_size1, hidden_size2) self.params['b2'] = np.zeros(hidden_size2) self.params['W3'] = weight_init_std * \ np.random.randn(hidden_size2, output_size) self.params['b3'] = np.zeros(output_size) self.params['ConVW1']=0.4*np.random.normal(0,1,size=150).reshape(6,5,5,1).transpose(0, 3, 1, 2) self.params['ConVW2']=0.25*np.random.normal(0,1,size=2400).reshape(16,6,5,5) self.params['ConVB1']=np.zeros(6) self.params['ConVB2']=np.zeros(16)
这段代码定义了一个名为TwoLayerNet的类,用于构建一个具有两个隐藏层的神经网络模型。在初始化方法中,首先会初始化权重和偏置。权重W1和W2是通过随机生成服从高斯分布的数值来初始化的,而偏置b1和b2则被初始化为全零。然后,还定义了一些卷积层的参数,包括卷积权重和偏置。卷积权重ConVW1和ConVW2也是通过随机生成服从高斯分布的数值来初始化的,而偏置ConVB1和ConVB2则被初始化为全零。
self.params = {} pre_channel_num = input_dim[0] for idx, conv_param in enumerate([conv_param_1, conv_param_2, conv_param_3, conv_param_4, conv_param_5, conv_param_6]): self.params['W' + str(idx+1)] = wight_init_scales[idx] * np.random.randn(conv_param['filter_num'], pre_channel_num, conv_param['filter_size'], conv_param['filter_size']) self.params['b' + str(idx+1)] = np.zeros(conv_param['filter_num']) pre_channel_num = conv_param['filter_num'] self.params['W7'] = wight_init_scales[6] * np.random.randn(64*4*4, hidden_size) self.params['b7'] = np.zeros(hidden_size) self.params['W8'] = wight_init_scales[7] * np.random.randn(hidden_size, output_size) self.params['b8'] = np.zeros(output_size)
这段代码是在构建卷积神经网络模型时初始化模型的参数。其中 self.params 是一个字典,用于存储模型的参数,包括卷积层的权重和偏置,以及全连接层的权重和偏置。具体来说,这段代码中,先根据输入数据的形状 input_dim 和卷积层的参数 conv_param 初始化第一个卷积层的权重和偏置,然后根据第一个卷积层的输出通道数初始化第二个卷积层的权重和偏置,以此类推,直到初始化所有的卷积层的权重和偏置。最后,初始化全连接层的权重和偏置,其中 W7 表示连接第 7 层和第 8 层的权重,W8 表示连接第 8 层和输出层的权重。这段代码中使用了高斯分布来初始化权重参数,其中 wight_init_scales 是一个包含 8 个元素的列表,用于指定每一层的权重参数的初始化标准差。
阅读全文
相关推荐












