import numpy as np class BPNeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重和偏置 self.weights_ih = np.random.randn(hidden_size, input_size) self.bias_ih = np.random.randn(hidden_size, 1) self.weights_ho = np.random.randn(output_size, hidden_size) self.bias_ho = np.random.randn(output_size, 1) # 定义激活函数 self.activation = lambda x: 1 / (1 + np.exp(-x)) self.derivative = lambda x: x * (1 - x) def forward(self, inputs): # 计算隐藏层的输出 hidden = self.activation(np.dot(self.weights_ih, inputs) + self.bias_ih) # 计算输出层的输出 output = self.activation(np.dot(self.weights_ho, hidden) + self.bias_ho) return output def backward(self, inputs, targets, output): # 计算输出层的误差 output_error = targets - output output_delta = output_error * self.derivative(output) # 计算隐藏层的误差 hidden_error = np.dot(self.weights_ho.T, output_delta) hidden_delta = hidden_error * self.derivative(hidden) # 更新权重和偏置 self.weights_ho += np.dot(output_delta, hidden.T) self.bias_ho += output_delta self.weights_ih += np.dot(hidden_delta, inputs.T) self.bias_ih += hidden_delta def train(self, inputs, targets, epochs): for i in range(epochs): for j in range(len(inputs)): # 前向传播 output = self.forward(inputs[j].reshape(-1, 1)) # 反向传播 self.backward(inputs[j].reshape(-1, 1), targets[j].reshape(-1, 1), output)
时间: 2023-06-16 11:05:01 浏览: 162
这段代码实现了一个使用反向传播算法进行训练的多层前馈神经网络。具体来说,它包括了以下几个部分:
1. 初始化函数__init__中,定义了输入层、隐藏层和输出层的节点数,以及它们之间的权重和偏置。其中,权重和偏置都是随机初始化的。
2. 定义了激活函数activation和导数函数derivative,这里采用的是Sigmoid函数。
3. 前向传播函数forward中,通过输入数据和当前的权重和偏置计算出隐藏层和输出层的输出值。
4. 反向传播函数backward中,通过目标值和当前的输出值计算出输出层的误差,然后通过权重矩阵的转置和输出层误差计算隐藏层的误差,最后更新权重和偏置。
5. 训练函数train中,通过迭代的方式对网络进行训练,每次迭代都遍历所有的输入数据,并调用前向传播和反向传播函数来更新权重和偏置。训练的次数由参数epochs指定。
这段代码实现了一个基本的神经网络,可以用于解决一些简单的分类和回归问题。但是需要注意的是,它还有很多可以改进的地方,比如添加正则化、使用其他的激活函数、调整学习率等等。
相关问题
import torch import torch.nn as nn import numpy as np from torch.utils.data import DataLoader, TensorDataset import pandas as pd class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.rnn = nn.RNN(input_size, hidden_size, num_layers=1, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h0 = torch.zeros(1, x.size(0), self.hidden_size) out, _ = self.rnn(x, h0) out = self.fc(out[:, -1, :]) return out input_size = 1 hidden_size = 32 output_size = 1 model = RNN(input_size, hidden_size, output_size) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) df = pd.read_csv('beijing_wangjing_125_new.csv') congestion_index = df['idx'].values congestion_index_tensor= torch.tensor(congestion_index, dtype=torch.float32) print(congestion_index_tensor) for epoch in range(100): outputs = model(congestion_index_tensor) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step()为什么会说张量维度不匹配,应该如何修改
从你的代码中可以看出,"labels"这个变量没有被定义或赋值。因此,当你调用`criterion(outputs, labels)`时会出现维度不匹配的错误。
为了解决这个问题,你需要指定一个标签张量来计算损失。你可以从你的CSV文件中提取标签数据,并将其转换为张量。例如,如果你的标签数据存储在名为“labels”的列中,则可以使用以下代码将其转换为张量:
```python
labels = df['labels'].values
labels_tensor = torch.tensor(labels, dtype=torch.float32)
```
然后,你可以在训练循环中使用这个标签张量来计算损失:
```python
for epoch in range(100):
outputs = model(congestion_index_tensor)
loss = criterion(outputs, labels_tensor)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
这样就可以解决维度不匹配的错误了。请注意,如果你的标签张量的维度和模型输出的维度不匹配,你仍然会遇到类似的错误。在这种情况下,你需要确保标签张量的形状与模型输出的形状匹配。
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt # 定义RBF神经网络的类 class RBFNetwork(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RBFNetwork, self).__init__() # 初始化输入层,隐含层,输出层的节点数 self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重矩阵和偏置向量 self.W1 = nn.Parameter(torch.randn(input_size, hidden_size)) # 输入层到隐含层的权重矩阵 self.b1 = nn.Parameter(torch.randn(hidden_size)) # 隐含层的偏置向量 self.W2 = nn.Parameter(torch.randn(hidden_size, output_size)) # 隐含层到输出层的权重矩阵 self.b2 = nn.Parameter(torch.randn(output_size)) # 输出层的偏置向量 def forward(self,x): # 前向传播过程 x = torch.from_numpy(x).float() # 将输入向量转换为张量 x = x.view(-1, self.input_size) # 调整输入向量的形状,使其与权重矩阵相匹配 h = torch.exp(-torch.cdist(x, self.W1.t()) + self.b1) # 计算隐含层的输出值,使用高斯径向基函数作为激活函数 y = F.linear(h, self.W2.t(), self.b2) # 计算输出层的输出值,使用线性函数作为激活函数 return y #定义pid控制器 class Pid(): def __init__(self, exp_val, kp, ki, kd): self.KP = kp self.KI = ki self.KD = kd self.exp_val = exp_val self.now_val = 0 self.sum_err = 0 self.now_err = 0 self.last_err = 0 def cmd_pid(self): self.last_err = self.now_err self.now_err = self.exp_val - self.now_val self.sum_err += self.now_err self.now_val = self.KP * (self.exp_val - self.now_val) \ + self.KI * self.sum_err + self.KD * (self.now_err - self.last_err) return self.now_val def err_pid(self): self.last_err = self.now_err self.now_err = self.exp_val - self.now_val self.sum_err += self.now_err self.p_err = self.exp_val - self.now_val self.i_err = self.sum_err self.d_err = self.now_err - self.last_err self.now_val = self.KP * (self.exp_val - self.now_val) \ + self.KI * self.sum_err + self.KD * (self.now_err - self.last_err) return self.p_err, self.i_err, self.d_err rbf_net = RBFNetwork(3,10,4) pid_val = [] #对pid进行初始化,目标值是1000 ,p=0.1 ,i=0.15, d=0.1 A_Pid = Pid(1000, 0.1, 0.1, 0.1) # 然后循环100次把数存进数组中去 for i in range(0, 100): input_vector = np.array(A_Pid.err_pid()) output_vector = rbf_net(input_vector) output_vector = output_vector.reshape(4,1) A_Pid = Pid(1000, output_vector[0], output_vector[1], output_vector[2]) pid_val.append(A_Pid.cmd_pid())
这段代码看起来是一个使用 RBF 神经网络实现 PID 控制的例子。其中,RBF 神经网络的参数由 `RBFNetwork` 类来定义,PID 控制器由 `Pid` 类来定义。在主函数中,先对 PID 控制器进行初始化,然后循环 100 次,每次将 PID 控制器的误差作为 RBF 神经网络的输入,得到输出后再输入回 PID 控制器中更新控制量,并将控制量存入 `pid_val` 数组中。最终 `pid_val` 数组中存储的就是经过 RBF 神经网络控制后的输出。
阅读全文