最优合并问题贪心算法分析
时间: 2023-11-19 19:29:42 浏览: 237
贪心算法分析
最优合并问题是指将多个已排序的序列合并成一个有序序列,使得合并的代价最小。其中代价定义为每次合并的两个序列长度之和。贪心算法是一种常用的解决该问题的方法。
假设有n个已排序的序列,每个序列的长度为l1,l2,...,ln。首先将其中长度最小的两个序列合并,合并后的代价为l1 + l2。接着将得到的新序列与长度次小的序列合并,合并后的代价为(l1 + l2) + l3。以此类推,直到所有序列都合并成一个有序序列。
贪心算法的正确性证明如下:假设A、B、C是三个已排序序列,长度分别为a、b、c。合并AB的代价为a+b,合并AC的代价为a+c,合并BC的代价为b+c。显然,如果a+b<=a+c和b+c,则AB的合并代价最小。因此,对于n个已排序序列,每次都选择长度最小的两个序列合并是最优的选择。
时间复杂度分析:每次合并需要遍历两个序列,因此总共需要遍历的次数为n-1次。每次遍历的时间复杂度为O(l1 + l2),其中l1和l2分别为两个序列的长度。因此,总时间复杂度为O(n * L),其中L为所有序列长度之和。
阅读全文