cyrus-beck算法代码使用java
时间: 2024-01-14 10:05:08 浏览: 234
以下是Java实现的Cyrus-Beck算法代码:
```java
import java.awt.Point;
public class CyrusBeckAlgorithm {
// 定义线段的两个端点
private Point p1, p2;
public CyrusBeckAlgorithm(Point p1, Point p2) {
this.p1 = p1;
this.p2 = p2;
}
// 计算法向量
private Point computeNormal(Point p1, Point p2) {
int dx = p2.x - p1.x;
int dy = p2.y - p1.y;
return new Point(dy, -dx);
}
// 计算点积
private double dotProduct(Point a, Point b) {
return a.x * b.x + a.y * b.y;
}
// 计算线段起点到P点的向量
private Point computeVector(Point p) {
return new Point(p.x - p1.x, p.y - p1.y);
}
// 计算交点
private Point computeIntersection(Point p, Point d) {
Point e = new Point(p1.x - p.x, p1.y - p.y);
double t = dotProduct(computeNormal(p1, p2), e) / dotProduct(computeNormal(p1, p2), d);
return new Point((int) (p.x + t * d.x), (int) (p.y + t * d.y));
}
// 判断点是否在线段内
private boolean isInside(Point p) {
Point d = new Point(p2.x - p1.x, p2.y - p1.y);
Point n = computeNormal(p1, p2);
Point w = computeVector(p);
double nd = dotProduct(n, d);
if (nd == 0) {
return false;
}
double t = -dotProduct(n, w) / nd;
return t >= 0 && t <= 1;
}
// 计算Cyrus-Beck剪裁后的线段
public Point[] cyrusBeckClip(Point p, Point q) {
Point d = new Point(q.x - p.x, q.y - p.y);
Point[] result = new Point[2];
int count = 0;
if (isInside(p)) {
result[count++] = p;
}
if (isInside(q)) {
result[count++] = q;
}
Point pi, qi;
pi = computeIntersection(p, d);
qi = computeIntersection(q, d);
if (isInside(pi)) {
result[count++] = pi;
}
if (isInside(qi)) {
result[count++] = qi;
}
if (count == 2) {
return result;
} else {
return null;
}
}
public static void main(String[] args) {
Point p1 = new Point(50, 50);
Point p2 = new Point(100, 100);
CyrusBeckAlgorithm cyrusBeck = new CyrusBeckAlgorithm(p1, p2);
Point p = new Point(0, 75);
Point q = new Point(150, 75);
Point[] result = cyrusBeck.cyrusBeckClip(p, q);
if (result != null) {
System.out.println("Clipped line segment: (" + result[0].x + ", " + result[0].y + ") to (" + result[1].x + ", " + result[1].y + ")");
} else {
System.out.println("Line segment is completely outside the clipping window.");
}
}
}
```
在这个例子中,我们定义了一条线段,然后使用Cyrus-Beck算法剪裁线段。我们还定义了一个矩形窗口,表示剪裁区域。在这个例子中,我们将线段从点(0,75)延伸到点(150,75)。如果剪裁后的线段在剪裁窗口内,则输出剪裁后的线段,否则输出“线段完全在剪裁窗口外”。
阅读全文