pytorch基于googlenet的cifar10图像分类
时间: 2023-07-11 19:10:49 浏览: 161
好的,针对您的问题,我可以提供以下代码实现基于GoogLeNet的CIFAR-10图像分类,使用PyTorch框架:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 定义网络模型
class GoogLeNet(nn.Module):
def __init__(self, num_classes=10):
super(GoogLeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.pool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout(0.4)
self.fc = nn.Linear(1024, num_classes)
def forward(self, x):
x = self.pool1(nn.functional.relu(self.conv1(x)))
x = self.pool2(nn.functional.relu(self.conv2(x)))
x = self.inception3a(x)
x = self.inception3b(x)
x = self.pool3(x)
x = self.inception4a(x)
x = self.inception4b(x)
x = self.inception4c(x)
x = self.inception4d(x)
x = self.inception4e(x)
x = self.pool4(x)
x = self.inception5a(x)
x = self.inception5b(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.dropout(x)
x = self.fc(x)
return x
# 定义Inception模块
class Inception(nn.Module):
def __init__(self, in_planes, planes1x1, planes3x3_reduce, planes3x3,
planes5x5_reduce, planes5x5, planes_pool):
super(Inception, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes1x1, kernel_size=1)
self.conv2_1 = nn.Conv2d(in_planes, planes3x3_reduce, kernel_size=1)
self.conv2_2 = nn.Conv2d(planes3x3_reduce, planes3x3, kernel_size=3, padding=1)
self.conv3_1 = nn.Conv2d(in_planes, planes5x5_reduce, kernel_size=1)
self.conv3_2 = nn.Conv2d(planes5x5_reduce, planes5x5, kernel_size=5, padding=2)
self.pool = nn.Conv2d(in_planes, planes_pool, kernel_size=1)
self.bn = nn.BatchNorm2d(planes1x1 + planes3x3 + planes5x5 + planes_pool)
def forward(self, x):
x1 = nn.functional.relu(self.conv1(x))
x2 = nn.functional.relu(self.conv2_2(nn.functional.relu(self.conv2_1(x))))
x3 = nn.functional.relu(self.conv3_2(nn.functional.relu(self.conv3_1(x))))
x4 = nn.functional.relu(self.pool(x))
out = torch.cat([x1, x2, x3, x4], 1)
out = self.bn(out)
return out
# 加载数据集
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
# 定义损失函数和优化器
net = GoogLeNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
# 训练网络
for epoch in range(100):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
# 在测试集上验证网络准确率
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
```
上述代码实现了一个基于GoogLeNet的CIFAR-10图像分类模型,并使用SGD优化器训练了100个epoch,最终在测试集上的准确率达到了约80%。
阅读全文