基于pytorch实现图片去噪
时间: 2023-11-14 09:03:42 浏览: 121
以下是基于PyTorch实现图片去噪的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms, datasets
# 定义超参数
batch_size = 64
epochs = 10
learning_rate = 0.001
# 加载数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# 构建模型
class DenoiseAutoencoder(nn.Module):
def __init__(self):
super(DenoiseAutoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(28*28, 256),
nn.ReLU(),
nn.Linear(256, 64),
nn.ReLU(),
nn.Linear(64, 16),
nn.ReLU()
)
self.decoder = nn.Sequential(
nn.Linear(16, 64),
nn.ReLU(),
nn.Linear(64, 256),
nn.ReLU(),
nn.Linear(256, 28*28),
nn.Tanh()
)
def forward(self, x):
x = x.view(-1, 28*28)
x = self.encoder(x)
x = self.decoder(x)
x = x.view(-1, 1, 28, 28)
return x
model = DenoiseAutoencoder()
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(epochs):
running_loss = 0.0
for data in train_loader:
images, _ = data
noisy_images = images + 0.5 * torch.randn(images.size())
optimizer.zero_grad()
outputs = model(noisy_images)
loss = criterion(outputs, images)
loss.backward()
optimizer.step()
running_loss += loss.item() * images.size(0)
epoch_loss = running_loss / len(train_loader.dataset)
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, epoch_loss))
# 保存模型
torch.save(model.state_dict(), 'denoise_autoencoder.pth')
```
该代码使用了一个基于全连接层的自编码器来实现图片去噪。首先,我们加载MNIST数据集,并使用一个带有高斯噪声的版本来训练我们的自编码器。我们定义了一个包含三个隐藏层的自编码器,其中编码器使用ReLU激活函数,解码器使用Tanh激活函数。我们使用MSE损失函数来衡量输出图像和输入图像之间的差异,并使用Adam优化器来更新模型参数。最后,我们保存了训练好的模型。
阅读全文