写一个基于tensorflow的Self-Attention层的代码
时间: 2023-04-04 09:02:32 浏览: 127
以下是基于 TensorFlow 的 Self-Attention 层的代码:
```
import tensorflow as tf
class SelfAttention(tf.keras.layers.Layer):
def __init__(self, units):
super(SelfAttention, self).__init__()
self.W1 = tf.keras.layers.Dense(units)
self.W2 = tf.keras.layers.Dense(units)
self.V = tf.keras.layers.Dense(1)
def call(self, inputs):
# inputs shape: (batch_size, seq_len, embedding_dim)
score = tf.nn.tanh(self.W1(inputs) + self.W2(inputs))
attention_weights = tf.nn.softmax(self.V(score), axis=1)
context_vector = attention_weights * inputs
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector
```
希望这个代码能够帮助你!
阅读全文