生成BP神经网络优化粒子群代码
时间: 2023-09-20 12:13:38 浏览: 93
粒子群优化算法优化BP神经网络的源代码.rar_nearbyvpp_基础的BP优化_粒子群 BP网络_粒子群BP_粒子群优化b
以下是一个简单的基于粒子群优化的BP神经网络训练代码实现,你可以根据自己的需求进行修改和优化。
```python
import numpy as np
#定义BP神经网络模型类
class BPNN(object):
def __init__(self, input_size, hidden_size, output_size):
# 初始化神经网络参数
self.input_size = input_size # 输入层大小
self.hidden_size = hidden_size # 隐藏层大小
self.output_size = output_size # 输出层大小
self.W1 = np.random.randn(self.input_size, self.hidden_size) # 输入层到隐藏层的权重矩阵
self.b1 = np.zeros((1, self.hidden_size)) # 隐藏层偏置项
self.W2 = np.random.randn(self.hidden_size, self.output_size) # 隐藏层到输出层的权重矩阵
self.b2 = np.zeros((1, self.output_size)) # 输出层偏置项
# 定义sigmoid激活函数
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
# 定义前向传播函数
def forward(self, X):
self.z1 = np.dot(X, self.W1) + self.b1 # 隐藏层输入
self.a1 = self.sigmoid(self.z1) # 隐藏层输出
self.z2 = np.dot(self.a1, self.W2) + self.b2 # 输出层输入
self.y_hat = self.sigmoid(self.z2) # 输出层输出
return self.y_hat
# 定义代价函数
def cost(self, X, y):
self.y_hat = self.forward(X)
J = 0.5 * np.sum((y - self.y_hat) ** 2)
return J
# 定义反向传播函数
def backward(self, X, y):
self.y_hat = self.forward(X)
delta3 = np.multiply(-(y - self.y_hat), self.sigmoid(self.z2) * (1 - self.sigmoid(self.z2)))
dW2 = np.dot(self.a1.T, delta3)
db2 = np.sum(delta3, axis=0, keepdims=True)
delta2 = np.dot(delta3, self.W2.T) * self.sigmoid(self.z1) * (1 - self.sigmoid(self.z1))
dW1 = np.dot(X.T, delta2)
db1 = np.sum(delta2, axis=0)
return dW1, db1, dW2, db2
# 定义优化器类
class ParticleSwarmOptimizer(object):
def __init__(self, cost_func, num_particles, input_size, hidden_size, output_size, max_iter=100, inertia_weight=0.729, cognitive_weight=1.49445, social_weight=1.49445):
self.cost_func = cost_func # 代价函数
self.num_particles = num_particles # 粒子数
self.input_size = input_size # 输入层大小
self.hidden_size = hidden_size # 隐藏层大小
self.output_size = output_size # 输出层大小
self.max_iter = max_iter # 最大迭代次数
self.inertia_weight = inertia_weight # 惯性权重
self.cognitive_weight = cognitive_weight # 个体认知权重
self.social_weight = social_weight # 群体社会权重
self.particles = [] # 粒子数组
self.velocities = [] # 速度数组
self.pbest_positions = [] # 粒子历史最优位置数组
self.pbest_scores = [] # 粒子历史最优得分数组
self.gbest_position = None # 群体历史最优位置
self.gbest_score = float('inf') # 群体历史最优得分
# 初始化粒子和速度
for i in range(self.num_particles):
nn = BPNN(self.input_size, self.hidden_size, self.output_size) # 初始化神经网络模型
self.particles.append(nn)
self.velocities.append((np.random.randn(nn.W1.shape[0], nn.W1.shape[1]), np.random.randn(nn.W2.shape[0], nn.W2.shape[1])))
# 初始化粒子历史最优得分和位置
score = self.cost_func(X, y)
self.pbest_scores.append(score)
self.pbest_positions.append((nn.W1.copy(), nn.b1.copy(), nn.W2.copy(), nn.b2.copy()))
# 初始化群体历史最优得分和位置
if score < self.gbest_score:
self.gbest_score = score
self.gbest_position = (nn.W1.copy(), nn.b1.copy(), nn.W2.copy(), nn.b2.copy())
# 定义粒子群优化算法
def optimize(self, X, y):
for iter in range(self.max_iter):
for i in range(self.num_particles):
nn = self.particles[i]
velocity = self.velocities[i]
# 计算新的速度
new_velocity = (
self.inertia_weight * velocity[0] +
self.cognitive_weight * np.random.rand() * (self.pbest_positions[i][0] - nn.W1) +
self.social_weight * np.random.rand() * (self.gbest_position[0] - nn.W1),
self.inertia_weight * velocity[1] +
self.cognitive_weight * np.random.rand() * (self.pbest_positions[i][2] - nn.W2) +
self.social_weight * np.random.rand() * (self.gbest_position[2] - nn.W2)
)
# 更新权重矩阵和偏置项
nn.W1 += new_velocity[0]
nn.b1 += new_velocity[0]
nn.W2 += new_velocity[1]
nn.b2 += new_velocity[1]
# 计算代价函数得分
score = self.cost_func(X, y)
# 更新粒子历史最优得分和位置
if score < self.pbest_scores[i]:
self.pbest_scores[i] = score
self.pbest_positions[i] = (nn.W1.copy(), nn.b1.copy(), nn.W2.copy(), nn.b2.copy())
# 更新群体历史最优得分和位置
if score < self.gbest_score:
self.gbest_score = score
self.gbest_position = (nn.W1.copy(), nn.b1.copy(), nn.W2.copy(), nn.b2.copy())
print('Iteration:', iter, 'Cost:', self.gbest_score)
# 生成训练数据
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])
# 初始化优化器
optimizer = ParticleSwarmOptimizer(cost_func=BPNN(X.shape[1], 4, y.shape[1]).cost, num_particles=10, input_size=X.shape[1], hidden_size=4, output_size=y.shape[1])
# 进行模型训练
optimizer.optimize(X, y)
```
需要注意的是,本代码实现仅供参考,具体实现方式可能因人而异,你需要根据自己的需求进行修改和优化。
阅读全文