diana算法python
时间: 2024-06-07 11:11:48 浏览: 92
Diana算法是一种聚类算法,用于将数据集中的数据分为多个组或簇。下面是使用Python实现Diana算法的示例代码:
```python
import numpy as np
from scipy.spatial.distance import cdist
def diana(X, k):
n, m = X.shape
labels = np.zeros(n)
clusters = [np.arange(n)]
while len(clusters) < k:
# find the cluster with the largest diameter
diameters = np.zeros(len(clusters))
for i, cluster in enumerate(clusters):
centroid = X[cluster].mean(axis=0)
diameters[i] = cdist(X[cluster], [centroid]).max()
largest_cluster_idx = np.argmax(diameters)
largest_cluster = clusters[largest_cluster_idx]
# split the largest cluster using k-means
centroid1, centroid2 = kmeans(X[largest_cluster], 2)
cluster1 = largest_cluster[labels[largest_cluster] == 0]
cluster2 = largest_cluster[labels[largest_cluster] == 1]
new_clusters = [cluster1, cluster2]
# update labels and clusters
for i, new_cluster in enumerate(new_clusters):
labels[new_cluster] = i
clusters.pop(largest_cluster_idx)
clusters.extend(new_clusters)
return labels
def kmeans(X, k, max_iter=100):
n, m = X.shape
centroids = X[np.random.choice(n, k, replace=False)]
for _ in range(max_iter):
labels = cdist(X, centroids).argmin(axis=1)
new_centroids = np.zeros((k, m))
for i in range(k):
new_centroids[i] = X[labels == i].mean(axis=0)
if np.all(centroids == new_centroids):
break
centroids = new_centroids
return centroids[0], centroids[1]
```
在上面的代码中,我们使用了Scipy库中的cdist函数来计算数据点之间的欧几里得距离。我们还实现了一个kmeans函数,用于Diana算法中的分裂步骤。在主函数diana中,我们首先将所有数据点归为一个簇,然后在每个迭代中找到直径最大的簇并将其分裂成两个新的簇。最终,我们得到k个簇,并返回每个数据点所属的簇标签。
阅读全文