DNN_model = Sequential() #DNN_model.add(Dense(64, input_dim=8, activation='relu')) DNN_model.add(Dense(8, input_dim=8, activation='relu')) #DNN_model.add(Dropout(0.5)) #DNN_model.add(Dense(8, activation='relu')) DNN_model.add(Dense(4, activation='relu')) #DNN_model.add(Dropout(0.5)) DNN_model.add(Dense(2, activation='softmax'))转换为c语言伪代码
时间: 2024-02-12 10:02:57 浏览: 207
对于这段 Python 代码的转换需要先确定所用的深度学习框架,因为不同框架的实现方式可能不同。此处我以 TensorFlow 为例,将其转化为 C 伪代码:
```
// 定义模型
struct DNN_model {
float weight1[8][8];
float bias1[8];
float weight2[8][4];
float bias2[4];
float weight3[4][2];
float bias3[2];
};
// 模型初始化
struct DNN_model DNN_model_init() {
struct DNN_model model;
// 初始化权重和偏置
// ...
return model;
}
// 定义激活函数 relu
float relu(float x) {
return x > 0 ? x : 0;
}
// 定义 softmax 函数
float softmax(float x[]) {
float sum = 0;
for (int i = 0; i < 2; ++i) {
sum += exp(x[i]);
}
for (int i = 0; i < 2; ++i) {
x[i] = exp(x[i]) / sum;
}
}
// 模型前向传播
void DNN_model_forward(struct DNN_model model, float input[], float output[]) {
float hidden1[8];
float hidden2[4];
for (int i = 0; i < 8; ++i) {
hidden1[i] = 0;
for (int j = 0; j < 8; ++j) {
hidden1[i] += input[j] * model.weight1[j][i];
}
hidden1[i] += model.bias1[i];
hidden1[i] = relu(hidden1[i]);
}
for (int i = 0; i < 4; ++i) {
hidden2[i] = 0;
for (int j = 0; j < 8; ++j) {
hidden2[i] += hidden1[j] * model.weight2[j][i];
}
hidden2[i] += model.bias2[i];
hidden2[i] = relu(hidden2[i]);
}
for (int i = 0; i < 2; ++i) {
output[i] = 0;
for (int j = 0; j < 4; ++j) {
output[i] += hidden2[j] * model.weight3[j][i];
}
output[i] += model.bias3[i];
}
softmax(output);
}
```
需要注意的是,这里的伪代码仅为示例,实际实现还需要根据具体问题进行优化和调整。
阅读全文