from keras.utils.vis_utils import plot_model from keras.models import Sequential from keras.layers import Dense, Dropout import pydot import graphviz # 构建神经网络 DNN_model = Sequential() DNN_model.add(Dense(64, input_dim=8, activation='relu')) DNN_model.add(Dense(8, input_dim=8, activation='relu')) DNN_model.add(Dropout(0.5)) DNN_model.add(Dense(8, activation='relu')) DNN_model.add(Dense(4, activation='relu')) DNN_model.add(Dropout(0.5)) DNN_model.add(Dense(2, activation='softmax')) # 可视化神经网络结构 plot_model(DNN_model, to_file='DNN5_model.png', show_shapes=True, show_layer_names=True)横纵坐标转为中文
时间: 2024-03-01 10:51:14 浏览: 345
您可以通过以下代码将横纵坐标转为中文:
```python
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] # 设置中文字体为黑体
plt.rcParams['axes.unicode_minus'] = False # 解决负号无法显示的问题
```
然后在可视化神经网络结构的代码中加入以下代码:
```python
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] # 设置中文字体为黑体
plt.rcParams['axes.unicode_minus'] = False # 解决负号无法显示的问题
from keras.utils.vis_utils import plot_model
from keras.models import Sequential
from keras.layers import Dense, Dropout
import pydot
import graphviz
# 构建神经网络
DNN_model = Sequential()
DNN_model.add(Dense(64, input_dim=8, activation='relu'))
DNN_model.add(Dense(8, input_dim=8, activation='relu'))
DNN_model.add(Dropout(0.5))
DNN_model.add(Dense(8, activation='relu'))
DNN_model.add(Dense(4, activation='relu'))
DNN_model.add(Dropout(0.5))
DNN_model.add(Dense(2, activation='softmax'))
# 可视化神经网络结构
plot_model(DNN_model, to_file='DNN5_model.png', show_shapes=True, show_layer_names=True)
```
这样,您就可以将横纵坐标转为中文了。
阅读全文