基于tensorflow的resnet18提取本地cifar10图像特征的python详细代码
时间: 2023-12-21 16:05:24 浏览: 85
以下是基于tensorflow的resnet18提取本地cifar10图像特征的Python详细代码:
```python
import tensorflow as tf
from tensorflow.keras import layers, models, datasets
# 加载cifar10数据集
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
# 数据预处理
train_images = train_images.astype('float32') / 255.0
test_images = test_images.astype('float32') / 255.0
# 定义ResNet18模型
def ResNet18():
inputs = layers.Input(shape=(32, 32, 3))
# 第一层卷积
x = layers.Conv2D(64, (3, 3), padding='same')(inputs)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# 第一层残差块
y = layers.Conv2D(64, (3, 3), padding='same')(x)
y = layers.BatchNormalization()(y)
y = layers.Activation('relu')(y)
y = layers.Conv2D(64, (3, 3), padding='same')(y)
y = layers.BatchNormalization()(y)
y = layers.Add()([x, y])
y = layers.Activation('relu')(y)
# 第二层残差块
x = layers.MaxPooling2D((2, 2))(y)
x = layers.Conv2D(128, (3, 3), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
y = layers.Conv2D(128, (3, 3), padding='same')(x)
y = layers.BatchNormalization()(y)
y = layers.Activation('relu')(y)
y = layers.Conv2D(128, (3, 3), padding='same')(y)
y = layers.BatchNormalization()(y)
y = layers.Add()([x, y])
y = layers.Activation('relu')(y)
# 第三层残差块
x = layers.MaxPooling2D((2, 2))(y)
x = layers.Conv2D(256, (3, 3), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
y = layers.Conv2D(256, (3, 3), padding='same')(x)
y = layers.BatchNormalization()(y)
y = layers.Activation('relu')(y)
y = layers.Conv2D(256, (3, 3), padding='same')(y)
y = layers.BatchNormalization()(y)
y = layers.Add()([x, y])
y = layers.Activation('relu')(y)
# 第四层残差块
x = layers.MaxPooling2D((2, 2))(y)
x = layers.Conv2D(512, (3, 3), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
y = layers.Conv2D(512, (3, 3), padding='same')(x)
y = layers.BatchNormalization()(y)
y = layers.Activation('relu')(y)
y = layers.Conv2D(512, (3, 3), padding='same')(y)
y = layers.BatchNormalization()(y)
y = layers.Add()([x, y])
y = layers.Activation('relu')(y)
# 全局池化层和最终分类层
y = layers.GlobalAveragePooling2D()(y)
outputs = layers.Dense(10, activation='softmax')(y)
model = models.Model(inputs=inputs, outputs=outputs)
return model
# 加载ResNet18模型
model = ResNet18()
# 加载已经训练好的权重
model.load_weights('resnet18_cifar10.h5')
# 提取特征
train_features = model.predict(train_images)
test_features = model.predict(test_images)
# 打印特征的形状
print('train_features shape:', train_features.shape)
print('test_features shape:', test_features.shape)
```
注:本代码中的`resnet18_cifar10.h5`是已经训练好的权重文件,可以在训练过程中保存下来,然后在测试或者提取特征时加载使用。如果没有权重文件,可以参考其他教程训练一个resnet18模型并保存权重。
阅读全文