in res.page_source是什么意思

时间: 2024-05-18 18:17:27 浏览: 120
`in res.page_source` 是一个 Python 中的条件语句,用于判断一个字符串是否包含另一个字符串。其中 `res.page_source` 是一个字符串类型的变量,它保存了当前页面的 HTML 源码。`in` 是 Python 中用于判断一个元素是否存在于某个对象中的关键字。如果对象中包含了这个元素,`in` 返回 `True`,否则返回 `False`。 在登录失败的断言中,我们使用 `if '用户名或密码错误' in res.page_source:` 来判断页面中是否包含“用户名或密码错误”的提示信息。如果包含,则说明登录失败,执行断言失败的操作;反之则说明登录成功,执行断言成功的操作。
相关问题

if '用户名或密码错误' in res.page_source: assert False, '登录失败,用户名或密码错误' else: assert 'Dashboard - Leon CRM' in res.title 如何将错误信息改成The password can not be less than 6 digits或者Please enter a valid email Password

您可以使用以下代码将错误信息改为"The password can not be less than 6 digits"或者"Please enter a valid email Password": ```python if '用户名或密码错误' in res.page_source: error_message = res.find_element_by_xpath("//div[contains(@class, 'error-message')]").text if "密码长度至少为6位" in error_message: assert False, 'The password can not be less than 6 digits' elif "请输入有效的电子邮件地址或密码" in error_message: assert False, 'Please enter a valid email Password' else: assert False, '登录失败,用户名或密码错误' else: assert 'Dashboard - Leon CRM' in res.title ``` 在这段代码中,我们首先使用 `find_element_by_xpath` 方法获取错误信息。然后,我们检查错误信息中是否包含特定的文本,如果包含,则抛出相应的自定义错误信息,否则仍然抛出默认的"登录失败,用户名或密码错误"信息。

from selenium import webdriver from selenium.webdriver.chrome.options import Options from bs4 import BeautifulSoup import time # 目标网站的 URL url = 'http://example.com/rank/list' # Chrome 浏览器配置 chrome_options = Options() chrome_options.add_argument('--disable-extensions') chrome_options.add_argument('--disable-gpu') chrome_options.add_argument('--no-sandbox') chrome_options.add_argument('--headless') chrome_options.add_argument('--disable-dev-shm-usage') # 启动 Chrome 浏览器 browser = webdriver.Chrome(options=chrome_options) # 发起第一页的请求并解析 HTML 标签 browser.get(url) time.sleep(3) # 等待 3 秒钟,等待 AJAX 加载完成 soup = BeautifulSoup(browser.page_source, 'html.parser') total_pages = soup.select('.ant-pagination-item:not(.ant-pagination-next):not(.ant-pagination-prev)')[-1]['title'] current_page = soup.select_one('.ant-pagination-item-active').text rank_list = parse_page(soup) # 发起所有页码的请求,并将结果存入列表中 for page in range(2, int(total_pages) + 1): if str(page) != current_page: # 模拟在浏览器中翻页操作 browser.execute_script(f'window.antDesignPro.current.delete("/rank/list?page={int(current_page)}")') # 删除当前页的数据 browser.execute_script(f'window.antDesignPro.current.jump("/rank/list?page={page}")') # 跳转到需要打开的页码 time.sleep(3) # 等待 3 秒钟,等待 AJAX 加载完成 soup = BeautifulSoup(browser.page_source, 'html.parser') page_data = parse_page(soup) rank_list += page_data current_page = page # 将所有分页数据合并成一个完整的 DataFrame 对象 all_data = merge_data(rank_list) # 关闭浏览器窗口 browser.quit() # 打印输出结果 print(all_data),注意:目标网站采用了 AJAX 或者 JavaScript 技术来进行分页加载数据,因此翻页时并没有刷新整个页面,也无法从html文本获得第一页以后的排名帮我修改代码,要求用到request和beautifulsoup等库,

好的,以下是修改后的代码,使用了 requests 和 BeautifulSoup 库来发送请求和解析 HTML 标签: ```python import requests from bs4 import BeautifulSoup import pandas as pd import time def get_rank_list(url): # 发起第一页的请求并解析 HTML 标签 res = requests.get(url) soup = BeautifulSoup(res.text, 'html.parser') total_pages = soup.select('.ant-pagination-item:not(.ant-pagination-next):not(.ant-pagination-prev)')[-1]['title'] current_page = soup.select_one('.ant-pagination-item-active').text rank_list = parse_page(soup) # 发起所有页码的请求,并将结果存入列表中 for page in range(2, int(total_pages) + 1): if str(page) != current_page: # 模拟在浏览器中翻页操作 headers = { 'Referer': url, 'X-Requested-With': 'XMLHttpRequest' } res = requests.delete(url, headers=headers, params={'page': int(current_page)}) # 删除当前页的数据 res = requests.get(url, headers=headers, params={'page': page}) # 跳转到需要打开的页码 soup = BeautifulSoup(res.text, 'html.parser') page_data = parse_page(soup) rank_list += page_data current_page = page # 等待 3 秒钟,等待 AJAX 加载完成 time.sleep(3) # 将所有分页数据合并成一个完整的 DataFrame 对象 all_data = merge_data(rank_list) return all_data def parse_page(soup): rank_list = [] for tr in soup.select('tbody tr'): rank = tr.select_one('.rank').text.strip() # 排名 name = tr.select_one('.name').text.strip() # 名称 score = tr.select_one('.score').text.strip() # 得分 rank_list.append([rank, name, score]) return rank_list def merge_data(rank_list): df = pd.DataFrame(rank_list, columns=['rank', 'name', 'score']) return df if __name__ == '__main__': url = 'http://example.com/rank/list' all_data = get_rank_list(url) print(all_data) ``` 注意:目标网站采用了 AJAX 或者 JavaScript 技术来进行分页加载数据,因此需要在请求头中添加 `X-Requested-With` 和 `Referer` 参数,以模拟浏览器发送请求。此外,还需要等待 AJAX 加载完成后再解析 HTML 标签,可以使用 `time.sleep()` 函数来实现。
阅读全文

相关推荐

改进代码func TracingList(ctx *gin.Context) { resp := models.Response{ Code: 0, Msg: "success", } t, _ := strconv.Atoi(ctx.Query("t")) label, _ := strconv.Atoi(ctx.Query("label")) page, _ := strconv.Atoi(ctx.DefaultQuery("page", "1")) pageSize, _ := strconv.Atoi(ctx.DefaultQuery("pageSize", "10")) code := ctx.Query("code") //设施类型 if len(code) == 0 { resp.Code = 400 resp.Msg = "请输入code值" ctx.JSON(400, resp) return } type Total struct { gorm.Model Type int16 Source int16 Explanation string Label int16 FacilityID string } db := common.DB.Session(&gorm.Session{}) if t < 0 || t > 5 { var req interface{} switch t { case 0: req = []*Total{} case 1: req = []*models.Flaw{} case 2: req = []*models.Issue{} case 3: req = []*models.Record{} case 4: req = []*models.Quality{} case 5: req = []*models.Inspection{} } //查询并分页 if t < 1 || t > 5 { res := db.Scopes(models.Paginate(page, pageSize)).Where("facility_id=?", code).Find(&req) if res.RowsAffected == 0 { resp.Code = 400 resp.Msg = "记录不存在" ctx.JSON(400, resp) return } } else { res := db.Scopes(models.Paginate(page, pageSize)).Raw("SELECT * FROM flaws WHERE facility_id = ? "+ "UNION SELECT * FROM issues WHERE facility_id = ? "+ "UNION SELECT * FROM records WHERE facility_id = ? "+ "UNION SELECT * FROM qualities WHERE facility_id = ? "+ "UNION SELECT * FROM inspections WHERE facility_id = ?", "code", "code", "code", "code", "code").Find(&req) if res.RowsAffected == 0 { resp.Code = 400 resp.Msg = "记录不存在" ctx.JSON(400, resp) return } } resp.Data = req ctx.JSON(200, resp) } else if label < 1 || label > 4 { var req []*Total res := db.Scopes(models.Paginate(page, pageSize)).Raw("SELECT * FROM flaws WHERE label = ? "+ "UNION SELECT * FROM issues WHERE label = ? "+ "UNION SELECT * FROM records WHERE label = ? "+ "UNION SELECT * FROM qualities WHERE label = ? "+ "UNION SELECT * FROM inspections WHERE label = ?", "label", "label", "label", "label", "label").Find(&req) if res.RowsAffected == 0 { resp.Code = 400 resp.Msg = "记录不存在" ctx.JSON(400, resp) return } resp.Data = req ctx.JSON(200, resp) } else { ctx.JSON(400, models.Response{ Code: 400, Msg: "参数有误", }) return } }

最新推荐

recommend-type

微信小程序实现图片上传功能实例(前端+PHP后端)

source: res.tempFilePaths }); wx.uploadFile({ url: 'http://www.website.com/home/api/uploadimg', filePath: res.tempFilePaths[0], name: 'file', success: function(res) { console.log(res.data); }...
recommend-type

基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip

【资源说明】 基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.