用R语言编写查看R语言自带的数据集airquality(纽约1973年5-9月每日空气质量)。列出airquality的前十行,并将这前十行保存到air中。任选三个列,查看airquality中列的对象类型。使用names查看airquality数据集中各列的名称。将air这个数据框导出为csv格式文件。(write.table (x, file ="", sep ="", row.names =TRUE, col.names =TRUE, quote =TRUE))
时间: 2024-02-24 12:53:14 浏览: 539
好的,以下是您需要的R语言代码:
# 导入airquality数据集
data(airquality)
# 列出airquality的前十行
head(airquality, 10)
# 将前十行保存到air中
air <- head(airquality, 10)
# 任选三个列,查看列的对象类型
class(air$Ozone)
class(air$Wind)
class(air$Temp)
# 使用names查看airquality数据集中各列的名称
names(airquality)
# 将air这个数据框导出为csv格式文件
write.table(air, file = "air.csv", sep = ",", row.names = TRUE, col.names = TRUE, quote = TRUE)
希望能够帮到您!
相关问题
r语言airquality 岭回归、lasso回归、决策树回归效果检验R语言代码
岭回归和lasso回归可以使用glmnet包,决策树回归可以使用rpart包来实现。下面是一个简单的示例代码,使用airquality数据集进行回归分析:
岭回归:
library(glmnet)
data(airquality)
# 岭回归模型
x <- model.matrix(Ozone ~ ., data = airquality)[,-1]
y <- airquality$Ozone
ridge_mod <- glmnet(x, y, alpha = 0, lambda = 0.1)
plot(ridge_mod)
lasso回归:
library(glmnet)
data(airquality)
# lasso回归模型
x <- model.matrix(Ozone ~ ., data = airquality)[,-1]
y <- airquality$Ozone
lasso_mod <- glmnet(x, y, alpha = 1, lambda = 0.1)
plot(lasso_mod)
决策树回归:
library(rpart)
data(airquality)
# 决策树回归模型
fit <- rpart(Ozone ~ ., data = airquality, method = "anova")
summary(fit)
在实际应用中,需要对模型进行交叉验证,并计算模型的预测准确率等指标来评估模型的效果。
根据R语言数据集airquality,绘制密度图,分页折线图,散点拟合图,带点箱型图
好的,以下是你所需要的代码:
绘制密度图:
# 导入数据
data(airquality)
# 绘制密度图
densityplot(~ Ozone, data = airquality, main = "Ozone Density Plot")
分页折线图:
# 导入数据
data(airquality)
# 绘制分页折线图
xyplot(Ozone~ Day | Month, data = airquality, type = "l", main = "Ozone Levels by Month")
散点拟合图:
# 导入数据
data(airquality)
# 绘制散点图
plot(Wind, Ozone, main = "Wind and Ozone Levels", xlab = "Wind", ylab = "Ozone")
# 添加拟合线
fit <- lm(Ozone ~ Wind, airquality)
abline(fit, col = "red")
带点箱型图:
# 导入数据
data(airquality)
# 绘制带点箱型图
bwplot(Ozone ~ Month, data = airquality, main = "Ozone Levels by Month", xlab = "Month", ylab = "Ozone", col = "lightblue")
stripchart(Ozone ~ Month, data = airquality, method = "jitter", pch = 20, add = TRUE)
希望这些代码对您有所帮助!
相关推荐
















