static char *TCPCommand; static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; int SetUpTCPtoSendInformation(char option[], char *command) { pthread_mutex_lock(&mutex); // 加锁 if (strstr(option, "set")) { TCPCommand = malloc(strlen(command) + 1); if (TCPCommand == NULL) { CON_LOG("Failed to set and obtain TCP command variable memory allocation"); goto fail; } strcpy(TCPCommand, command); goto succeed; } else if (strstr(option, "get") && TCPCommand != NULL && strlen(TCPCommand)) { strcpy(command, TCPCommand); memset(TCPCommand, '\0', strlen(TCPCommand)); free(TCPCommand); pthread_mutex_unlock(&mutex); // 解锁 goto succeed; } memset(command, 0, sizeof(command)); strcpy(command, ""); fail: pthread_mutex_unlock(&mutex); // 解锁 return 0; succeed: pthread_mutex_unlock(&mutex); // 解锁 return 1; }

时间: 2024-04-09 15:32:03 浏览: 5
在给定的代码中,锁的使用是正确的。使用 `goto` 语句是为了避免在不同的分支中重复写解锁代码。无论是 `fail` 还是 `succeed` 的标签,都会在相应的位置执行解锁操作。 在 `fail` 标签处,如果内存分配失败,则会执行解锁操作并返回 0,表示设置TCP命令失败。 在 `succeed` 标签处,如果是获取TCP命令并且成功获取到了命令,则会执行解锁操作并返回 1,表示设置TCP命令成功。 需要注意的是,在 `get` 分支中,使用了 `free(TCPCommand)` 来释放内存。这意味着在获取TCP命令后,需要确保在使用完命令后进行内存的释放操作。 总体而言,给定的代码使用互斥锁来确保对共享资源的访问是线程安全的,并且通过 `goto` 语句来简化代码并避免重复解锁的问题。
相关问题

static char *TCPCommand; static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; int SetUpTCPtoSendInformation(char option[], char *command) { pthread_mutex_lock(&mutex); // 加锁 if (strstr(option, "set")) { TCPCommand = malloc(strlen(command) + 1); if (TCPCommand == NULL) { CON_LOG("Failed to set and obtain TCP command variable memory allocation"); goto fail; } strcpy(TCPCommand, command); goto succeed; } else if (strstr(option, "get") && TCPCommand != NULL && strlen(TCPCommand)) { strcpy(command, TCPCommand); memset(TCPCommand, '\0', strlen(TCPCommand)); free(TCPCommand); pthread_mutex_unlock(&mutex); // 解锁 goto succeed; } memset(command, 0, sizeof(command)); strcpy(command, ""); fail: pthread_mutex_unlock(&mutex); // 解锁 return 0; succeed: pthread_mutex_unlock(&mutex); // 解锁 return 1; } 编写一个多进程或多进程调用这个函数

您可以使用多线程来调用`SetUpTCPtoSendInformation`函数。以下是一个示例代码,其中使用了两个线程来调用该函数: ```c #include <stdio.h> #include <stdlib.h> #include <pthread.h> static char *TCPCommand; static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; int SetUpTCPtoSendInformation(char option[], char *command) { pthread_mutex_lock(&mutex); // 加锁 if (strstr(option, "set")) { TCPCommand = malloc(strlen(command) + 1); if (TCPCommand == NULL) { printf("Failed to set and obtain TCP command variable memory allocation\n"); goto fail; } strcpy(TCPCommand, command); goto succeed; } else if (strstr(option, "get") && TCPCommand != NULL && strlen(TCPCommand)) { strcpy(command, TCPCommand); memset(TCPCommand, '\0', strlen(TCPCommand)); free(TCPCommand); pthread_mutex_unlock(&mutex); // 解锁 goto succeed; } memset(command, 0, sizeof(command)); strcpy(command, ""); fail: pthread_mutex_unlock(&mutex); // 解锁 return 0; succeed: pthread_mutex_unlock(&mutex); // 解锁 return 1; } void* thread_func(void* arg) { char option[4]; char command[100]; strcpy(option, "set"); strcpy(command, "Example Command"); SetUpTCPtoSendInformation(option, command); return NULL; } int main() { pthread_t thread1, thread2; pthread_create(&thread1, NULL, thread_func, NULL); pthread_create(&thread2, NULL, thread_func, NULL); pthread_join(thread1, NULL); pthread_join(thread2, NULL); return 0; } ``` 在上面的示例中,`thread_func`函数作为线程的入口点,在每个线程中调用`SetUpTCPtoSendInformation`函数。通过使用`pthread_create`函数创建两个线程,并使用`pthread_join`函数等待线程的完成。 请注意,由于使用了全局变量和互斥锁,线程将共享`TCPCommand`变量,并且在访问和修改该变量时需要进行互斥操作。

static char *TCPCommand = NULL; static pthread_mutex_t mutex = P_MUTEX_INITIALIZER; int SetTCPCommand(char *command) { pthread_mutex_lock(&mutex); // 加锁 if (TCPCommand != NULL) { free(TCPCommand); } TCPCommand = malloc(strlen(command) + 1); if (TCPCommand == NULL) { printf("Failed to allocate memory for TCP command\n"); pthread_mutex_unlock(&mutex); // 解锁 return 0; } strcpy(TCPCommand, command); printf("set: %s\n", TCPCommand); pthread_mutex_unlock(&mutex); // 解锁 return 1; } int GetTCPCommand(char **command) { pthread_mutex_lock(&mutex); // 加锁 if (TCPCommand == NULL || strlen(TCPCommand) == 0) { printf("TCP command is empty\n"); pthread_mutex_unlock(&mutex); // 解锁 return 0; } *command = malloc(strlen(TCPCommand) + 1); if (*command == NULL) { printf("Failed to allocate memory for command\n"); pthread_mutex_unlock(&mutex); // 解锁 return 0; } strcpy(*command, TCPCommand); printf("get: %s\n", *command); free(TCPCommand); TCPCommand = NULL; pthread_mutex_unlock(&mutex); // 解锁 return 1; }根据这个帮我优化代码,因为我是在另一个进程一直执行GetTCPCommand,所以他会先于SetTCPCommand执行

根据你的描述,如果另一个进程在不断执行`GetTCPCommand`,而且在调用`SetTCPCommand`之前执行了`GetTCPCommand`,那么可能会出现问题。这是因为在获取到TCPCommand之后,你立即将其释放,并将其置为NULL,这样在另一个进程中再次调用`GetTCPCommand`时就会返回空值。 为了解决这个问题,你可以使用条件变量来实现等待和通知机制。以下是修改后的代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <pthread.h> static char *TCPCommand = NULL; static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t cond = PTHREAD_COND_INITIALIZER; int SetTCPCommand(char *command) { pthread_mutex_lock(&mutex); // 加锁 if (TCPCommand != NULL) { free(TCPCommand); } TCPCommand = malloc(strlen(command) + 1); if (TCPCommand == NULL) { printf("Failed to allocate memory for TCP command\n"); pthread_mutex_unlock(&mutex); // 解锁 return 0; } strcpy(TCPCommand, command); printf("set: %s\n", TCPCommand); pthread_cond_signal(&cond); // 发送信号通知等待的线程 pthread_mutex_unlock(&mutex); // 解锁 return 1; } int GetTCPCommand(char **command) { pthread_mutex_lock(&mutex); // 加锁 while (TCPCommand == NULL || strlen(TCPCommand) == 0) { // 等待条件满足 pthread_cond_wait(&cond, &mutex); } *command = malloc(strlen(TCPCommand) + 1); if (*command == NULL) { printf("Failed to allocate memory for command\n"); pthread_mutex_unlock(&mutex); // 解锁 return 0; } strcpy(*command, TCPCommand); printf("get: %s\n", *command); free(TCPCommand); TCPCommand = NULL; pthread_mutex_unlock(&mutex); // 解锁 return 1; } ``` 在修改后的代码中,我们引入了一个条件变量`cond`来实现等待和通知机制。在`GetTCPCommand`函数中,如果TCPCommand为空,则调用`pthread_cond_wait`等待条件满足。而在`SetTCPCommand`函数中,我们在设置完TCPCommand并释放锁之前,调用`pthread_cond_signal`发送信号通知等待的线程。 这样,在另一个进程一直执行`GetTCPCommand`时,如果在调用`SetTCPCommand`之前执行了`GetTCPCommand`,它会等待直到有新的TCPCommand被设置,并且不会错过通知。 希望这次能满足你的需求!如果你还有其他问题,请随时提问。

相关推荐

int SetUpTCPtoSendInformation(char option[], char *command) { static char *TCPCommand; static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; static int isFirstCall = 1; pthread_mutex_lock(&mutex); // 加锁 if (isFirstCall && strstr(option, "set")) { TCPCommand = malloc(strlen(command) + 1); if (TCPCommand == NULL) { CON_LOG("Failed to set and obtain TCP command variable memory allocation"); goto fail; } strcpy(TCPCommand, command); isFirstCall = 0; goto succeed; } else if (!isFirstCall && strstr(option, "get") && TCPCommand != NULL && strlen(TCPCommand)) { strcpy(command, TCPCommand); memset(TCPCommand, '\0', strlen(TCPCommand)); free(TCPCommand); isFirstCall = 1; goto succeed; } memset(command, 0, sizeof(command)); strcpy(command, ""); fail: pthread_mutex_unlock(&mutex); // 解锁 return 0; succeed: pthread_mutex_unlock(&mutex); // 解锁 return 1; } 和static char *TCPCommand; static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; int SetUpTCPtoSendInformation(char option[], char *command) { static int isFirstCall = 1; pthread_mutex_lock(&mutex); // 加锁 if (isFirstCall && strstr(option, "set")) { TCPCommand = malloc(strlen(command) + 1); if (TCPCommand == NULL) { CON_LOG("Failed to set and obtain TCP command variable memory allocation"); goto fail; } strcpy(TCPCommand, command); isFirstCall = 0; goto succeed; } else if (!isFirstCall && strstr(option, "get") && TCPCommand != NULL && strlen(TCPCommand)) { strcpy(command, TCPCommand); memset(TCPCommand, '\0', strlen(TCPCommand)); free(TCPCommand); isFirstCall = 1; goto succeed; } memset(command, 0, sizeof(command)); strcpy(command, ""); fail: pthread_mutex_unlock(&mutex); // 解锁 return 0; succeed: pthread_mutex_unlock(&mutex); // 解锁 return 1; }区别

最新推荐

recommend-type

Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar

Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rarJava开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar
recommend-type

基于android的公司员工考勤综合信息平台源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

珍藏很久的一套源码升级了很多

很强大的阿凤飞飞的身份就把饭啦啊开房记录看妇科阿里看到就考虑是否就解放路口空间按时到路口附近开了房间卡拉的时间分开垃圾的浪费空间按可浪费阿克纠纷的看了觉得空房间看大神经费卡上的减肥快接啊看来积分卡时间分开拉丝机房里看见啦开恐怕为日文名弄法卡上的健康饭卡里解放开了哈嘎考虑对方好几万呢uaho时到路口附近开了房间卡拉的时间分开垃圾的浪费空间按可浪费阿克纠纷的看了觉得空房间看大神经费卡上的减肥快接啊看来积分卡时间分开拉丝机房里看见啦开恐怕为日文名弄法卡上的健康饭卡里解放开了哈嘎考虑对方好几万呢uaho上的健康饭卡里解放开了哈嘎考虑对方好几万呢uaho时到路口附近开了房间卡拉的时间分开垃圾的浪费空间按可浪费阿克纠纷的看了觉得空房间看大神经费卡上的减肥快接啊看来积分卡时间分开拉丝机房里看见啦开恐怕为日文名弄法卡上的健康饭卡里解放开了哈嘎考虑对方好几万呢uaho垃圾的浪费空间按可浪费阿克纠纷的看了觉得空房间看大神经费卡上的减肥快接啊看来积分卡时间分开拉丝机房里看见啦开恐怕为日文名弄法卡上的健康饭卡里解放开了哈嘎考虑对方好几万呢uaho上的健康饭卡里解放开了哈嘎考虑对方好几万呢uaho时到路口附近开
recommend-type

附件二六个指标与权重得分 - 副本.xlsx

附件二六个指标与权重得分 - 副本
recommend-type

自学助词自学助词自学助词

自学助词自学助词自学助词
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。