使用C语言实现模拟生产者 消费者进程实现同步与互斥操作,并加注释

时间: 2024-01-07 09:02:34 浏览: 31
下面是使用C语言实现的生产者消费者问题,并使用信号量实现同步与互斥操作的代码。代码中使用了POSIX标准的信号量库。 ```c #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <pthread.h> #include <semaphore.h> #define BUFFER_SIZE 10 int buffer[BUFFER_SIZE]; int in = 0, out = 0; sem_t empty, full; pthread_mutex_t mutex; void *producer(void *arg) { int item; while (1) { item = rand() % 1000; // 生成随机数 sem_wait(&empty); // 等待空缓冲区 pthread_mutex_lock(&mutex); buffer[in] = item; // 将随机数添加到缓冲区中 in = (in + 1) % BUFFER_SIZE; printf("Producing item %d\n", item); pthread_mutex_unlock(&mutex); sem_post(&full); // 增加满缓冲区信号量 sleep(1); } } void *consumer(void *arg) { int item; while (1) { sem_wait(&full); // 等待有数据可消费 pthread_mutex_lock(&mutex); item = buffer[out]; // 从缓冲区中取出数据 out = (out + 1) % BUFFER_SIZE; printf("Consuming item %d\n", item); pthread_mutex_unlock(&mutex); sem_post(&empty); // 增加空缓冲区信号量 sleep(1); } } int main() { pthread_t tid1, tid2; // 初始化信号量和互斥锁 sem_init(&empty, 0, BUFFER_SIZE); sem_init(&full, 0, 0); pthread_mutex_init(&mutex, NULL); // 创建并启动生产者和消费者线程 pthread_create(&tid1, NULL, producer, NULL); pthread_create(&tid2, NULL, consumer, NULL); // 等待线程结束 pthread_join(tid1, NULL); pthread_join(tid2, NULL); // 销毁信号量和互斥锁 sem_destroy(&empty); sem_destroy(&full); pthread_mutex_destroy(&mutex); return 0; } ``` 在上面的代码中,我们使用了一个大小为10的缓冲区作为生产者和消费者之间的共享资源。生产者线程会生成一个随机数,并将其添加到缓冲区中,而消费者线程则从缓冲区中取出一个随机数进行消费。为了实现线程间的同步和互斥,我们使用了POSIX标准的信号量库和互斥锁。 在程序开始时,我们通过调用sem_init函数和pthread_mutex_init函数来初始化信号量和互斥锁。empty信号量初始化为BUFFER_SIZE,表示缓冲区中有BUFFER_SIZE个空闲位置可以用于生产者线程添加随机数。full信号量初始化为0,表示缓冲区中没有可用于消费的数据。互斥锁初始化为NULL,表示使用默认的属性。 在生产者线程中,我们首先使用sem_wait函数来等待空闲缓冲区的出现。如果缓冲区已经满了,那么该函数会阻塞线程,等待信号量变为非0。然后,我们使用pthread_mutex_lock函数来获取互斥锁,保证在缓冲区中添加随机数时不会出现竞争和冲突。接着,我们将随机数添加到缓冲区中,更新in指针,打印出当前生产的数值。最后,我们使用pthread_mutex_unlock函数释放互斥锁,并使用sem_post函数增加full信号量,表示缓冲区中的可消费数据数量增加了一个。 在消费者线程中,我们首先使用sem_wait函数来等待有数据可消费。如果缓冲区为空,那么该函数会阻塞线程,等待信号量变为非0。然后,我们使用pthread_mutex_lock函数来获取互斥锁,保证在缓冲区中取出随机数时不会出现竞争和冲突。接着,我们从缓冲区中取出数据,更新out指针,打印出当前消费的数值。最后,我们使用pthread_mutex_unlock函数释放互斥锁,并使用sem_post函数增加empty信号量,表示缓冲区中的空闲位置数量增加了一个。 在程序结束时,我们通过调用sem_destroy函数和pthread_mutex_destroy函数来销毁信号量和互斥锁。

相关推荐

最新推荐

recommend-type

OS大作业生产者消费者同步问题的实现

操作系统实践大作业:使用POSIX条件变量和互斥锁实现生产者、消费者同步问题,缓冲区空时消费者不能消费,当有生产者生产产品后唤醒阻塞的消费者;缓冲区满时生产者不能生产,当有消费者消费产品后唤醒阻塞的生产者...
recommend-type

操作系统:哲学家进餐问题(p,v操作实现互斥与同步)

分析哲学家进餐问题,p,v操作实现互斥与同步,分析记录性信号量的不足,并指出给改进方法 方法一:最多允许4人同时进餐; 方法二:分奇偶数进餐,以及AND型信号量解决该问题。 (免费下载,无需积分)
recommend-type

智慧物流医药物流落地解决方案qytp.pptx

智慧物流医药物流落地解决方案qytp.pptx
recommend-type

JAVA物业管理系统设计与实现.zip

JAVA物业管理系统设计与实现
recommend-type

基于java的聊天系统的设计于实现.zip

基于java的聊天系统的设计于实现
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。