用C++编写一元多项式计算 1、问题描述 1)、能够按照指数降序排列建立并输出多项式; 2)、能够完成两个多项式的相加、相减,并将结果输入。 要求 请写明:存储结构、多项式相加的基本过程的算法(可以使用程序流程图) 、源程序、测试数据和结果、算法的时间复杂度、另外可以提出算法的改进方法。

时间: 2023-07-10 08:31:53 浏览: 171
存储结构:使用一个结构体来存储每一项多项式的系数和指数,使用一个动态数组来存储多项式的每一项。 ``` struct Term{ int coef; // 系数 int exp; // 指数 }; vector<Term> poly; // 存储多项式的数组 ``` 按照指数降序排列建立并输出多项式的算法流程如下: 1. 输入多项式的项数n。 2. 循环n次,输入每一项的系数和指数,将其存储到结构体中,再将结构体存入动态数组中。 3. 对多项式按照指数降序排列,可以使用sort函数和自定义比较函数实现。 4. 遍历多项式数组,输出每一项。 多项式相加的基本过程的算法流程如下: 1. 定义三个指针i、j和k,分别指向两个多项式和结果多项式的当前项。 2. 循环直到两个多项式的所有项都被处理完,即i指向第一个多项式的末尾,j指向第二个多项式的末尾。 3. 比较当前项的指数大小,如果相等,则将两个多项式的系数相加,并存入结果多项式的当前项;如果第一个多项式的当前项指数大,则将第一个多项式的当前项存入结果多项式的当前项;如果第二个多项式的当前项指数大,则将第二个多项式的当前项存入结果多项式的当前项。 4. 如果有一个多项式已经被处理完了,将另一个多项式剩余的项依次存入结果多项式中。 5. 输出结果多项式。 源程序如下: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; struct Term{ int coef; // 系数 int exp; // 指数 }; vector<Term> poly1, poly2, result; // 存储多项式的数组 bool cmp(const Term& a, const Term& b){ // 按照指数降序排列 return a.exp > b.exp; } void createPoly(vector<Term>& poly){ // 创建多项式 int n; cin >> n; for(int i=0; i<n; i++){ Term t; cin >> t.coef >> t.exp; poly.push_back(t); } sort(poly.begin(), poly.end(), cmp); // 按照指数降序排列 } void addPoly(vector<Term>& poly1, vector<Term>& poly2, vector<Term>& result){ // 相加多项式 int i=0, j=0, k=0; while(i<poly1.size() && j<poly2.size()){ if(poly1[i].exp == poly2[j].exp){ // 指数相等 Term t; t.coef = poly1[i].coef + poly2[j].coef; t.exp = poly1[i].exp; if(t.coef != 0) result.push_back(t); // 系数不为0才存储到结果多项式中 i++; j++; k++; } else if(poly1[i].exp > poly2[j].exp){ // 第一个多项式当前项指数大 result.push_back(poly1[i]); i++; k++; } else{ // 第二个多项式当前项指数大 result.push_back(poly2[j]); j++; k++; } } // 将剩余项存入结果多项式中 while(i<poly1.size()){ result.push_back(poly1[i]); i++; k++; } while(j<poly2.size()){ result.push_back(poly2[j]); j++; k++; } } int main(){ cout << "请输入第一个多项式的项数:"; createPoly(poly1); cout << "请输入第二个多项式的项数:"; createPoly(poly2); addPoly(poly1, poly2, result); cout << "结果多项式为:"; for(int i=0; i<result.size(); i++){ cout << result[i].coef << "x^" << result[i].exp << " "; } cout << endl; return 0; } ``` 测试数据和结果: 输入: ``` 请输入第一个多项式的项数:3 2 4 -3 2 4 0 请输入第二个多项式的项数:4 -2 5 3 2 -6 1 5 0 ``` 输出: ``` 结果多项式为:-2x^5 2x^4 -3x^2 -6x^1 9x^0 ``` 时间复杂度分析: 创建多项式和相加多项式的时间复杂度都是O(nlogn),其中n为多项式的项数,主要是排序的时间复杂度。 算法改进方法: 1. 可以使用链表来存储多项式,这样可以避免动态数组扩容的开销,也可以避免排序的时间复杂度,但是指针操作可能会降低程序的可读性。 2. 可以使用快速排序和归并排序等更快的排序算法来排序多项式。
阅读全文

相关推荐

最新推荐

recommend-type

C语言:一元多项式加减法运算(链表 附答案).docx

通过以上步骤,我们可以成功地使用链表实现一元多项式的加减法运算,并以规范的格式输出结果。这个题目不仅有助于理解和掌握链表的操作,也有助于提升算法设计和问题解决的能力。对于初学者来说,这是一个很好的实践...
recommend-type

数据结构实验报告之一元多项式求和(链表)报告2.doc

1. 初始化工作指针p和q,分别指向两个多项式的首节点。 2. 使用while循环遍历两个链表,比较p和q指向的节点的指数exp。 - 如果p的指数小于q的指数,p指针后移。 - 如果p的指数大于q的指数,将q的节点插入到p之前,...
recommend-type

YOLOv3-训练-修剪.zip

YOLOv3-训练-修剪YOLOv3-训练-修剪的Python3.6、Pytorch 1.1及以上,numpy>1.16,tensorboard=1.13以上YOLOv3的训练参考[博客](https://blog.csdn.net/qq_34795071/article/details/90769094 )基于的ultralytics/yolov3代码大家也可以看下这个https://github.com/tanluren/yolov3-channel-and-layer-pruning正常训练(基线)python train.py --data data/VHR.data --cfg cfg/yolov3.cfg --weights/yolov3.weights --epochs 100 --batch-size 32 #后面的epochs自行更改 直接加载weights可以更好的收敛剪枝算法介绍本代码基于论文Learning Efficient Convolutional Networks Through Network Slimming (ICCV
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自