def dataset3Params(X, y, Xval, yval,vals): #找到最优C和gamma """ Returns your choice of C and sigma. You should complete this function to return the optimal C and sigma based on a cross-validation set. """ acc = 0 best_c=0 #初始化C best_gamma=0 #初始化gamma for i in vals: #遍历vals中所有的参数C C= i for j in vals: #遍历所有C与gamma的组合 gamma = 1/j classifier = SVC(C=C,gamma=gamma) classifier.fit(X,y) prediction = classifier.predict(Xval) score = classifier.score(Xval,yval) if score>acc: acc =score best_c =C best_gamma=gamma return best_c, best_gamma
时间: 2023-06-15 10:05:31 浏览: 84
Dataset-of-Gazebo-Worlds-Models-and-Maps:我用于测试Navigation2的一组凉亭世界模型和地图
这是一个使用SVM模型进行参数选择的函数。函数输入包括训练集X和y、交叉验证集Xval和yval以及参数范围vals。该函数的输出是最优C和gamma的值。
函数中使用两个嵌套的for循环来遍历参数范围vals中所有的C和gamma的组合。对于每个组合,使用SVM模型进行训练,并在交叉验证集上进行预测和评分。如果当前评分比之前的最高评分要高,就更新最优的C和gamma的值。
最后,函数返回最优的C和gamma的值。
阅读全文