coddirection = {c: codon_ratios.loc[self.tissue, c] > 0 if np.abs( codon_ratios.loc[self.tissue, c]) > threshold else np.nan for c in aa_codons} codonprob[aa] = {c: [codweights[c] / sumweights, coddirection[c]] for c in aa_codons}
时间: 2024-03-15 15:42:04 浏览: 70
这是一个Python代码段,它的功能是为每个氨基酸计算其对应的密码子的概率和方向。具体来说,它首先定义了一个字典`coddirection`,其中每个密码子的值都是一个布尔类型的值,表示该密码子在给定的组织中是否具有偏向性。如果该密码子的偏向性大于阈值,则将其值设置为True,否则将其值设置为NaN。接下来,它为每个氨基酸定义了一个字典`codonprob`,其中每个密码子的值都是一个列表,包含两个元素:第一个元素是该密码子出现的概率,第二个元素是该密码子在给定的组织中是否具有偏向性。其中,密码子的概率由一个名为`codweights`的字典计算得出,而该氨基酸所有密码子的概率之和则由`sumweights`计算得出。
相关问题
f=open('D:/QLNU/writing/homework/BI/2022-2023第二学期作业/20230607/hORFeome_V8.1.fasta','r+') f_out=open('D:/QLNU/writing/homework/BI/2022-2023第二学期作业/20230607/out.CSV','w+') global codon_counts codon_counts = {} # DNA序列 lines=f.readlines() if lines[0]=='>': pass else: dna_sequence = lines # 将序列分割成三个一组的密码子 codons = [dna_sequence[i:i+3] for i in range(0, len(dna_sequence), 3)] # 统计每个密码子出现的次数 for codon in codons: if codon in codon_counts: codon_counts[codon] += 1 else: codon_counts[codon] = 1 # 计算每个密码子的使用频率 total_codons = len(codons) codon_frequencies = {} for codon in codon_counts: codon_frequencies[codon] = codon_counts[codon] / total_codons # 输出结果 f.write(codon_frequencies)优化这段代码
Sure, I can help you optimize the code. Here are some suggestions:
1. Use "with open" to handle file I/O instead of "open" and "close". This ensures that the file is properly closed even if an exception is raised.
2. Use a dictionary comprehension to count the occurrences of each codon.
3. Use a generator expression to calculate the total number of codons.
4. Use the csv module to write the results to the output file.
Here's the optimized code:
```python
import csv
codon_counts = {}
with open('D:/QLNU/writing/homework/BI/2022-2023第二学期作业/20230607/hORFeome_V8.1.fasta', 'r') as f:
dna_sequence = f.read().replace('\n', '')
# count the occurrences of each codon
codon_counts = {dna_sequence[i:i+3]: codon_counts.get(dna_sequence[i:i+3], 0) + 1 for i in range(0, len(dna_sequence), 3)}
# calculate the total number of codons
total_codons = sum(codon_counts.values())
codon_frequencies = {}
for codon in codon_counts:
codon_frequencies[codon] = codon_counts[codon] / total_codons
# write the results to the output file
with open('D:/QLNU/writing/homework/BI/2022-2023第二学期作业/20230607/out.CSV', 'w', newline='') as f_out:
writer = csv.writer(f_out)
writer.writerow(['Codon', 'Frequency'])
for codon in codon_frequencies:
writer.writerow([codon, codon_frequencies[codon]])
```
This code reads in the DNA sequence from the input file, counts the occurrences of each codon using a dictionary comprehension, calculates the total number of codons using a generator expression, calculates the frequency of each codon, and writes the results to the output file using the csv module.
def translate(): dna=Dna.get() complementary_bases = {"A": "T", "T": "A", "C": "G", "G": "C"} new_dna_seq = "" for base in dna: new_dna_seq += complementary_bases[base] rna_seq=new_dna_seq.replace("T", "U") result="RNA sequence:"+rna_seq label2.config(text=result) codon_table={'GCU':'A','GCC':'A','GCA':'A','GCG':'A','CGU':'R','CGC':'R','CGA':'R','CGG':'R', 'AGA':'R','AGG':'R','UCU':'S','UCC':'S','UCA':'S','UCG':'S','AGU':'S','AGC':'S', 'AUU':'I','AUC':'I','AUA':'I','UUA':'L','UUG':'L','CUU':'L','CUC':'L','CUA':'L', 'CUG':'L','GGU':'G','GGC':'G','GGA':'G','GGG':'G','GUU':'V','GUC':'V','GUA':'V', 'GUG':'V','ACU':'T','ACC':'T','ACA':'T','ACG':'T','CCU':'P','CCC':'P','CCA':'P', 'CCG':'P','AAU':'N','AAC':'N','GAU':'D','GAC':'D','UGU':'C','UGC':'C','CAA':'Q', 'CAG':'Q','GAA':'E','GAG':'E','CAU':'H','CAC':'H','AAA':'K','AAG':'K','UUU':'F', 'UUC':'F','UAU':'Y','UAC':'Y','AUG':'M','UGG':'W','UAG':'*','UGA':'*','UAA':'*'} protein_seq="" for i in range(0,len(rna_seq),3): codon=rna_seq[i:i+3] if codon_table[codon]!="*": protein_seq+=codon_table[codon] else: break result="Protein sequence:"+protein_seq label2.config(text=result) 解释一下这个程序
这个程序是一个DNA序列翻译成蛋白质序列的工具。程序首先获取用户输入的DNA序列,然后将DNA序列中的碱基进行互补配对,生成新的DNA序列。接着将新的DNA序列翻译成RNA序列,通过查找密码子表将RNA序列翻译成蛋白质序列。程序最终输出翻译后的RNA序列和蛋白质序列。这个程序使用了一个字典来存储密码子,将每个三个碱基的密码子翻译成对应的氨基酸,同时使用一个循环来逐个处理每个密码子。如果碰到终止密码子,程序会停止翻译过程并输出最终的蛋白质序列。
阅读全文