rrt 机械臂 python
时间: 2023-11-28 18:02:27 浏览: 184
RRt 是机器人路径规划算法中的一种,它的全称是"Rapidly-exploring Random Trees"。机械臂是一种可编程的机械设备,用于执行各种复杂的动作和任务。而Python是一种高级编程语言,被广泛用于机器学习、人工智能和机器人控制等领域。
在机械臂控制领域,RRt 算法可以应用于路径规划,以确定机械臂在给定环境中执行任务时的最佳路径。RRt 算法的特点是通过随机探索的方式构建一个树形结构,以产生一系列可能的路径。通过遍历这个树形结构,RRt 算法可以找到到达目标位置的最佳路径。
Python 是一种非常强大的编程语言,它提供了丰富的库和工具,可以帮助我们实现机械臂控制和路径规划。在使用 Python 进行机械臂控制时,我们可以利用 Python 的库来调用机械臂的驱动程序,并编写相应的控制算法。同时,Python 也提供了一些常用的机器人学和运动规划的库,例如 MoveIt 和 Pybullet,可以方便地实现机械臂的路径规划和运动控制。
综上所述,RRt 算法可以与 Python 结合使用,用于机械臂的路径规划和控制。通过使用 Python,我们可以更方便地开发出高效且灵活的机械臂控制系统,使机械臂能够在复杂的环境中准确地执行各种任务。
相关问题
RRT实现机械臂避障代码
RRT(Rapidly-exploring Random Tree)是一种常用的路径规划算法,用于解决机械臂避障问题。下面是一个简单的RRT实现机械臂避障的代码示例:
```python
import numpy as np
class Node:
def __init__(self, q):
self.q = q
self.parent = None
class RRT:
def __init__(self, start, goal, obstacles, step_size, max_iter):
self.start = Node(start)
self.goal = Node(goal)
self.obstacles = obstacles
self.step_size = step_size
self.max_iter = max_iter
self.nodes = []
def generate_random_node(self):
q_rand = np.random.uniform(low=-np.pi, high=np.pi, size=len(self.start.q))
return Node(q_rand)
def find_nearest_node(self, q_rand):
distances = [self.distance(q_rand, node.q) for node in self.nodes]
nearest_node = self.nodes[np.argmin(distances)]
return nearest_node
def extend(self, q_near, q_rand):
q_new = q_near.q + self.step_size * (q_rand.q - q_near.q) / np.linalg.norm(q_rand.q - q_near.q)
if not self.collision_check(q_new):
q_new_node = Node(q_new)
q_new_node.parent = q_near
self.nodes.append(q_new_node)
return q_new_node
return None
def plan(self):
self.nodes.append(self.start)
for _ in range(self.max_iter):
q_rand = self.generate_random_node()
q_near = self.find_nearest_node(q_rand)
q_new = self.extend(q_near, q_rand)
if q_new and self.distance(q_new.q, self.goal.q) < self.step_size:
self.goal.parent = q_new
return self.generate_path()
return None
def generate_path(self):
path = []
node = self.goal
while node:
path.append(node.q)
node = node.parent
return path[::-1]
def distance(self, q1, q2):
return np.linalg.norm(q1 - q2)
def collision_check(self, q):
for obstacle in self.obstacles:
if self.distance(q, obstacle) < 0.5: # 假设机械臂的碰撞半径为0.5
return True
return False
# 示例使用
start = np.array([0, 0, 0])
goal = np.array([np.pi/2, np.pi/2, np.pi/2])
obstacles = [np.array([1, 1, 1]), np.array([-1, -1, -1])]
step_size = 0.1
max_iter = 1000
rrt = RRT(start, goal, obstacles, step_size, max_iter)
path = rrt.plan()
if path:
print("找到路径:")
for q in path:
print(q)
else:
print("未找到路径")
```
这段代码实现了一个简单的RRT算法,用于机械臂的避障路径规划。其中,`start`表示起始位置,`goal`表示目标位置,`obstacles`表示障碍物的位置,`step_size`表示每次扩展的步长,`max_iter`表示最大迭代次数。代码中的`collision_check`函数用于检测机械臂是否与障碍物发生碰撞,可以根据实际情况进行修改。
rrtconnet算法python代码机械臂路径规划
RRT(Rapidly-exploring Random Tree)算法是一种用于路径规划的随机采样算法,广泛应用于机械臂路径规划中。RRT算法通过随机采样状态空间,快速构建一棵探索树,从而找到从起始点到目标点的路径。以下是一个简单的RRT算法Python代码示例,用于机械臂的路径规划:
```python
import numpy as np
import matplotlib.pyplot as plt
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.parent = None
class RRT:
def __init__(self, start, goal, obstacle_list, rand_area, expand_dis=1.0, path_resolution=0.5, goal_sample_rate=5, max_iter=500):
self.start = Node(start[0], start[1])
self.goal = Node(goal[0], goal[1])
self.obstacle_list = obstacle_list
self.rand_area = rand_area
self.expand_dis = expand_dis
self.path_resolution = path_resolution
self.goal_sample_rate = goal_sample_rate
self.max_iter = max_iter
self.node_list = [self.start]
def planning(self, animation=True):
for i in range(self.max_iter):
rnd_node = self.get_random_node()
nearest_ind = self.get_nearest_node_index(self.node_list, rnd_node)
nearest_node = self.node_list[nearest_ind]
new_node = self.steer(nearest_node, rnd_node, self.expand_dis)
if self.check_collision(new_node, self.obstacle_list):
self.node_list.append(new_node)
if animation:
self.draw_graph(rnd_node)
if self.calc_dist_to_goal(self.node_list[-1].x, self.node_list[-1].y) <= self.expand_dis:
final_node = self.steer(self.node_list[-1], self.goal, self.expand_dis)
if self.check_collision(final_node, self.obstacle_list):
return self.generate_final_course(len(self.node_list) - 1)
return None
def steer(self, from_node, to_node, extend_length=float("inf")):
new_node = Node(from_node.x, from_node.y)
d, theta = self.calc_distance_and_angle(new_node, to_node)
new_node.x += extend_length * np.cos(theta)
new_node.y += extend_length * np.sin(theta)
new_node.parent = from_node
return new_node
def get_random_node(self):
if np.random.randint(0, 100) > self.goal_sample_rate:
rnd = Node(np.random.uniform(self.rand_area[0], self.rand_area[1]),
np.random.uniform(self.rand_area[0], self.rand_area[1]))
else: # goal point sampling
rnd = Node(self.goal.x, self.goal.y)
return rnd
def get_nearest_node_index(self, node_list, rnd_node):
dlist = [(node.x - rnd_node.x)**2 + (node.y - rnd_node.y)**2 for node in node_list]
minind = dlist.index(min(dlist))
return minind
def check_collision(self, node, obstacle_list):
for (ox, oy, size) in obstacle_list:
dx_list = [ox - node.x, ox - node.x + self.expand_dis * np.cos(node.y)]
dy_list = [oy - node.y, oy - node.y + self.expand_dis * np.sin(node.y)]
d = np.hypot(dx_list, dy_list)
if min(d) <= size:
return False # collision
return True # safe
def calc_dist_to_goal(self, x, y):
dx = x - self.goal.x
dy = y - self.goal.y
return np.hypot(dx, dy)
def generate_final_course(self, goal_ind):
path = [[self.goal.x, self.goal.y]]
node = self.node_list[goal_ind]
while node.parent is not None:
path.append([node.x, node.y])
node = node.parent
path.append([self.start.x, self.start.y])
return path
def draw_graph(self, rnd_node):
plt.clf()
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if rnd_node is not None:
plt.plot(rnd_node.x, rnd_node.y, "^k")
for node in self.node_list:
if node.parent is not None:
plt.plot([node.x, node.parent.x], [node.y, node.parent.y], "-g")
for (ox, oy, size) in self.obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.goal.x, self.goal.y, "xr")
plt.axis("equal")
plt.axis([self.rand_area[0], self.rand_area[1], self.rand_area[0], self.rand_area[1]])
plt.grid(True)
plt.pause(0.01)
def main():
print("Start rrt planning")
# obstacle list
obstacle_list = [
(5, 5, 1),
(3, 6, 2),
(3, 8, 2),
(3, 10, 2),
(7, 5, 2),
(9, 5, 2)
]
# rrt settings
rrt = RRT(start=[0, 0], goal=[10, 10], rand_area=[0, 10], obstacle_list=obstacle_list)
path = rrt.planning(animation=True)
if path is None:
print("No path found")
else:
print("Path found")
plt.clf()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.plot(rrt.start.x, rrt.start.y, "xr")
plt.plot(rrt.goal.x, rrt.goal.y, "xr")
for (ox, oy, size) in obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.grid(True)
plt.axis("equal")
plt.show()
if __name__ == '__main__':
main()
```
阅读全文