写出修正错误后的代码:Traceback (most recent call last): File "D:\Master\pythonProject\homework6-1.py", line 85, in <module> D.train(generate_real(), torch.tensor([1.0])) File "D:\Master\pythonProject\homework6-1.py", line 44, in train out = self.forward(input) File "D:\Master\pythonProject\homework6-1.py", line 41, in forward return self.model(input)
时间: 2024-02-27 19:57:06 浏览: 90
PYTHON学习教程:调用函数代码知识点讲解及练习.docx
根据错误提示,可以尝试进行以下修改:
```
import torch
import torch.nn as nn
import random
import math
def generate_real():
data = torch.tensor([
random.uniform(0.0, math.sin(math.pi / 4)),
random.uniform(1.0, math.sin(math.pi * 3 / 4)),
random.uniform(0.0, math.sin(math.pi * 5 / 4)),
random.uniform(-1.0, math.sin(math.pi * 7 / 4))
])
return data
def generate_test():
data = torch.tensor([random.random() for _ in range(9)])
return data
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(4, 32),
nn.ReLU(),
nn.Linear(32, 16),
nn.ReLU(),
nn.Linear(16, 1),
nn.Sigmoid()
)
def forward(self, input):
return self.model(input)
def train(self, input, label):
out = self.forward(input)
loss = nn.BCELoss()(out, label)
loss.backward()
return loss
D = Discriminator()
input = generate_real()
label = torch.tensor([1.0])
loss = D.train(input, label)
print(loss)
```
这段代码主要是对 `Discriminator` 类进行了修改,并添加了一些测试代码。
在 `Discriminator` 类中,我们将 `model` 属性的初始化代码添加到了 `__init__` 方法中,以保证每个 `Discriminator` 实例在初始化时都会初始化一个 `model` 属性。同时,在 `train` 方法中,我们将 `out` 和 `label` 的顺序进行了调整,保证 `nn.BCELoss()` 函数的输入参数的顺序正确。最后,我们添加了一些测试代码,以确保代码的正确性。
阅读全文