tic Selected_Index = BPLSH(Data,M,L,W); TimeC(Counter1, Counter2, iteration) = toc; Preserved_Size(Counter1, Counter2, iteration) = 100 * numel(Selected_Index)/size(Data,1);

时间: 2024-04-07 07:28:07 浏览: 15
这段代码与第一段代码类似,不过增加了一个新的操作:计算结果的保留比例。具体而言,代码中的 tic 函数用于记录当前时间,toc 函数用于计算从 tic 函数被调用时到 toc 函数被调用时的时间差,即程序的执行时间。这里的程序是调用了 BPLSH 函数,该函数的输入参数包括 Data、M、L 和 W。 在执行完 BPLSH 函数后,代码将计算得到的结果赋值给 Selected_Index 变量,并将程序执行的时间存储在一个三维矩阵 TimeC 中,其中 Counter1 和 Counter2 分别表示两个循环变量的索引,iteration 表示 BPLSH 函数的迭代次数。这样,我们就可以根据不同的参数配置对程序执行时间进行分析和比较。 除了记录程序执行时间之外,代码还计算了结果的保留比例,并将结果存储在一个名为 Preserved_Size 的三维矩阵中。具体而言,代码通过计算 Selected_Index 中元素数量占 Data 行数的比例来得到结果的保留比例,并将其乘以 100 后存储在 Preserved_Size 中。这样,我们就可以根据不同的参数配置对结果的保留比例进行分析和比较。
相关问题

tic Selected_Index = BPLSH(Data,M,L,W); TimeC(Counter1, Counter2, iteration) = toc;

这是一个简单的代码片段,使用了 tic 和 toc 函数来计算程序的执行时间。具体而言,代码中的 tic 函数用于记录当前时间,toc 函数用于计算从 tic 函数被调用时到 toc 函数被调用时的时间差,即程序的执行时间。这里的程序是调用了 BPLSH 函数,该函数的输入参数包括 Data、M、L 和 W。 在执行完 BPLSH 函数后,代码将计算得到的结果赋值给 Selected_Index 变量,并将程序执行的时间存储在一个三维矩阵 TimeC 中,其中 Counter1 和 Counter2 分别表示两个循环变量的索引,iteration 表示 BPLSH 函数的迭代次数。这样,我们就可以根据不同的参数配置对程序执行时间进行分析和比较。

clc; clear; close all; tic; N=128; M=[4 16 32 64]; D=5; c=0.15; nt=0.1289; nr=0.9500; N_ofdm=1000; snr_dB=1:18; SNR=10.^(snr_dB./10); for kk=1:length(snr_dB) N_fft=N*2+2; for jj=1:length(M) base_data=randi([0 1],1,N*N_ofdm*log2(M(jj))); data_temp1= reshape(base_data,log2(M(jj)),[])'; data_temp2= bi2de(data_temp1); mod_data = qammod(data_temp2,M(jj)); data=reshape(mod_data,N,[])'; H_data=zeros(N_ofdm,N_fft); H_data(:,2:N_fft/2)= data; H_data(:,N_fft/2+2:N_fft)= conj(fliplr(data)); ifft_data=ifft(H_data,[],2); ifft_data=ifft_data+0.02*ones(size(ifft_data)); Noise=awgn(ifft_data,SNR(kk),'measured')-ifft_data; Rx_data=ifft_data*nt*nr*exp(-c*D)+Noise; Rx_data=Rx_data/(nt*nr*exp(-c*D)) fft_data=fft(Rx_data,[],2); Rx_psk_data=fft_data(:,2:N_fft/2); demodulation_data = qamdemod(Rx_psk_data',M(jj)); demodulation_data= reshape(demodulation_data,[],1); temp1=de2bi(demodulation_data); err(kk,jj)=sum(sum((temp1~=data_temp1))); end BER(kk,:)=err(kk,:)./(N*N_ofdm*log2(M(jj))); end figure(); for a=1:length(M) semilogy(snr_dB,BER(:,a),'*-','LineWidth',1.5);hold on; end代码逐句解释

clc; clear; close all; %清空命令窗口,清除变量,关闭所有窗口 tic; %开始计时 N=128; %设置子载波数 M=[4 16 32 64]; %设置调制阶数 D=5; %设置距离参数 c=0.15; %设置衰减系数 nt=0.1289; %设置噪声方差 nr=0.9500; N_ofdm=1000; %设置OFDM符号数 snr_dB=1:18; %设置信噪比(dB) SNR=10.^(snr_dB./10); %将信噪比转换为线性单位 for kk=1:length(snr_dB) %循环进行不同信噪比下的仿真 N_fft=N*2+2; %设置FFT点数 for jj=1:length(M) %循环进行不同调制阶数下的仿真 base_data=randi([0 1],1,N*N_ofdm*log2(M(jj))); %随机生成基带数据 data_temp1= reshape(base_data,log2(M(jj)),[])'; %将基带数据转换为矩阵形式 data_temp2= bi2de(data_temp1); %将二进制数据转换为十进制数据 mod_data = qammod(data_temp2,M(jj)); %QAM调制 data=reshape(mod_data,N,[])'; %将调制后的数据转换为矩阵形式 H_data=zeros(N_ofdm,N_fft); %初始化频域数据 H_data(:,2:N_fft/2)= data; %填充频域数据 H_data(:,N_fft/2+2:N_fft)= conj(fliplr(data)); %添加共轭对称的数据 ifft_data=ifft(H_data,[],2); %进行IFFT变换 ifft_data=ifft_data+0.02*ones(size(ifft_data)); %添加循环前缀 Noise=awgn(ifft_data,SNR(kk),'measured')-ifft_data; %添加高斯白噪声 Rx_data=ifft_data*nt*nr*exp(-c*D)+Noise; %接收端信号 Rx_data=Rx_data/(nt*nr*exp(-c*D)); %对接收信号进行归一化 fft_data=fft(Rx_data,[],2); %进行FFT变换 Rx_psk_data=fft_data(:,2:N_fft/2); %提取频域数据 demodulation_data = qamdemod(Rx_psk_data',M(jj)); %QAM解调 demodulation_data= reshape(demodulation_data,[],1); %将解调后的数据转换为列向量 temp1=de2bi(demodulation_data); %将十进制数据转换为二进制数据 err(kk,jj)=sum(sum((temp1~=data_temp1))); %计算错误比特数 end BER(kk,:)=err(kk,:)./(N*N_ofdm*log2(M(jj))); %计算误比特率 end figure(); %绘制误比特率曲线图 for a=1:length(M) semilogy(snr_dB,BER(:,a),'*-','LineWidth',1.5);hold on; %绘制误比特率曲线 end

相关推荐

clear all; close all; clc; tic bits_options = [0,1,2]; noise_option = 1; b = 4; NT = 2; SNRdBs =[0:2:20]; sq05=sqrt(0.5); nobe_target = 500; BER_target = 1e-3; raw_bit_len = 2592-6; interleaving_num = 72; deinterleaving_num = 72; N_frame = 1e8; for i_bits=1:length(bits_options) bits_option=bits_options(i_bits); BER=zeros(size(SNRdBs)); for i_SNR=1:length(SNRdBs) sig_power=NT; SNRdB=SNRdBs(i_SNR); sigma2=sig_power10^(-SNRdB/10)noise_option; sigma1=sqrt(sigma2/2); nobe = 0; Viterbi_init for i_frame=1:1:N_frame switch (bits_option) case {0}, bits=zeros(1,raw_bit_len); case {1}, bits=ones(1,raw_bit_len); case {2}, bits=randi(1,raw_bit_len,[0,1]); end encoding_bits = convolution_encoder(bits); interleaved=[]; for i=1:interleaving_num interleaved=[interleaved encoding_bits([i:interleaving_num:end])]; end temp_bit =[]; for tx_time=1:648 tx_bits=interleaved(1:8); interleaved(1:8)=[]; QAM16_symbol = QAM16_mod(tx_bits, 2); x(1,1) = QAM16_symbol(1); x(2,1) = QAM16_symbol(2); if rem(tx_time-1,81)==0 H = sq05(randn(2,2)+jrandn(2,2)); end y = Hx; if noise_option==1 noise = sqrt(sigma2/2)(randn(2,1)+j*randn(2,1)); y = y + noise; end W = inv(H'H+sigma2diag(ones(1,2)))H'; X_tilde = Wy; X_hat = QAM16_slicer(X_tilde, 2); temp_bit = [temp_bit QAM16_demapper(X_hat, 2)]; end deinterleaved=[]; for i=1:deinterleaving_num deinterleaved=[deinterleaved temp_bit([i:deinterleaving_num:end])]; end received_bit=Viterbi_decode(deinterleaved); for EC_dummy=1:1:raw_bit_len, if bits(EC_dummy)~=received_bit(EC_dummy), nobe=nobe+1; end if nobe>=nobe_target, break; end end if (nobe>=nobe_target) break; end end = BER(i_SNR) = nobe/((i_frame-1)*raw_bit_len+EC_dummy); fprintf('bits_option:%d,SNR:%d dB,BER:%1.4f\n',bits_option,SNRdB,BER(i_SNR)); end figure; semilogy(SNRdBs,BER); xlabel('SNR(dB)'); ylabel('BER'); title(['Bits_option:',num2str(bits_option)]); grid on; end将这段代码改为有噪声的情况

clear all; close all; clc;ticits_option = 2;noise_option = 1;raw_bit_len = 2592-6;interleaving_num = 72;deinterleaving_num = 72;N_frame = 1e4;SNRdBs = [0:2:20];sq05 = sqrt(0.5);bits_options = [0, 1, 2]; % 三种bits-option情况obe_target = 500;BER_target = 1e-3;for i_bits = 1:length(bits_options) bits_option = bits_options(i_bits); BER = zeros(size(SNRdBs)); for i_SNR = 1:length(SNRdBs) sig_power = 1; SNRdB = SNRdBs(i_SNR); sigma2 = sig_power * 10^(-SNRdB/10); sigma = sqrt(sigma2/2); nobe = 0; for i_frame = 1:N_frame switch bits_option case 0 bits = zeros(1, raw_bit_len); case 1 bits = ones(1, raw_bit_len); case 2 bits = randi([0,1], 1, raw_bit_len); end encoding_bits = convolution_encoder(bits); interleaved = []; for i = 1:interleaving_num interleaved = [interleaved encoding_bits([i:interleaving_num:end])]; end temp_bit = []; for tx_time = 1:648 tx_bits = interleaved(1:8); interleaved(1:8) = []; QAM16_symbol = QAM16_mod(tx_bits, 2); x(1,1) = QAM16_symbol(1); x(2,1) = QAM16_symbol(2); if rem(tx_time - 1, 81) == 0 H = sq05 * (randn(2,2) + j * randn(2,2)); end y = H * x; if noise_option == 1 noise = sigma * (randn(2,1) + j * randn(2,1)); y = y + noise; end W = inv(H' * H + sigma2 * diag(ones(1,2))) * H'; K_tilde = W * y; x_hat = QAM16_slicer(K_tilde, 2); temp_bit = [temp_bit QAM16_demapper(x_hat, 2)]; end deinterleaved = []; for i = 1:deinterleaving_num deinterleaved = [deinterleaved temp_bit([i:deinterleaving_num:end])]; end received_bit = Viterbi_decode(deinterleaved); for EC_dummy = 1:1:raw_bit_len if nobe >= obe_target break; end if received_bit(EC_dummy) ~= bits(EC_dummy) nobe = nobe + 1; end end if nobe >= obe_target break; end end BER(i_SNR) = nobe / (i_frame * raw_bit_len); fprintf('bits-option: %d, SNR: %d dB, BER: %1.4f\n', bits_option, SNRdB, BER(i_SNR)); end figure; semilogy(SNRdBs, BER); xlabel('SNR (dB)'); ylabel('BER'); title(['Bits-Option: ', num2str(bits_option)]); grid on;end注释这段matlab代码

最新推荐

recommend-type

基于MATLAB_Simulink平台下TIC2000DSP代码的自动生成.pdf

基于MATLAB_Simulink平台下TIC2000DSP代码的自动生成 本文介绍了一种基于MATLAB/Simulink平台下的TIC2000DSP代码自动生成方法,旨在解决传统DSP代码开发周期长、效率低的问题。该方法利用MATLAB、Simulink、Real-...
recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

Memcached 1.2.4 版本源码包

粤嵌gec6818开发板项目Memcached是一款高效分布式内存缓存解决方案,专为加速动态应用程序和减轻数据库压力而设计。它诞生于Danga Interactive,旨在增强LiveJournal.com的性能。面对该网站每秒数千次的动态页面请求和超过七百万的用户群,Memcached成功实现了数据库负载的显著减少,优化了资源利用,并确保了更快的数据访问速度。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

软件项目开发全过程文档资料.zip

软件项目开发全过程文档资料.zip
recommend-type

Java基础上机题-分类整理版.doc

Java基础上机题-分类整理版
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。