请用C++代码实现以下功能:1.输入HuffmanTree的参考标准底稿:输入一段字符串,作为发送方和接收方进行编码的统一标准,统计出现的字符种类数和出现的频度。 2.初始化HuffmanTree参数:给定报文中26个字母a-z及空格的出现频率{64, 13, 22, 32, 103, 21, 15, 47, 57, 1, 5, 32, 20, 57, 63, 15, 1, 48, 51, 80, 23, 8, 18, 1, 16, 1, 168}。 3.创建HuffmanTree和编码表:根据1)或2)的输入,构建赫夫曼树并为这些字符编制赫夫曼编码,并输出。 4.验收/测试用例 模拟发送端 输入:I love you 输出:01101111011110011100000010111100011100100001 模拟接收端 输入 输入:01101101111011000111111010111101101001100001 输出:it is a dog 5.模拟发送端,从键盘输入字符串,在屏幕上输出输入串的编码 6.模拟接收端,从键盘上输入0-1赫夫曼编码串,翻译出对应的原文。
时间: 2023-06-13 16:08:23 浏览: 290
由于题目涉及到比较多的细节问题,这里给出一个基本的Huffman编码的实现框架,具体细节可以根据实际情况进行修改。
```c++
#include <iostream>
#include <vector>
#include <queue>
#include <map>
#include <string>
using namespace std;
// 定义Huffman树的节点结构体
struct HuffmanNode
{
char ch; // 节点存储的字符
int freq; // 字符出现的频率
HuffmanNode *left, *right; // 左右子节点指针
HuffmanNode(char c, int f, HuffmanNode *l = nullptr, HuffmanNode *r = nullptr)
: ch(c), freq(f), left(l), right(r) {}
};
// 定义Huffman编码表的结构体
struct HuffmanCode
{
string code; // 字符对应的编码
int freq; // 字符出现的频率
};
// 定义比较函数,用于Huffman树节点构建的小根堆
struct Compare
{
bool operator()(const HuffmanNode *a, const HuffmanNode *b) const
{
return a->freq > b->freq;
}
};
// 构建Huffman树
HuffmanNode *buildHuffmanTree(const vector<int> &freqs)
{
// 构建小根堆
priority_queue<HuffmanNode *, vector<HuffmanNode *>, Compare> pq;
for (char c = 'a'; c <= 'z'; c++)
{
if (freqs[c - 'a'] > 0)
{
pq.push(new HuffmanNode(c, freqs[c - 'a']));
}
}
if (freqs[' '] > 0)
{
pq.push(new HuffmanNode(' ', freqs[' ']));
}
// 循环构建Huffman树
while (pq.size() > 1)
{
HuffmanNode *left = pq.top();
pq.pop();
HuffmanNode *right = pq.top();
pq.pop();
HuffmanNode *parent = new HuffmanNode('\0', left->freq + right->freq, left, right);
pq.push(parent);
}
return pq.top();
}
// 递归构建Huffman编码表
void buildHuffmanCodeTable(HuffmanNode *root, const string &prefix, map<char, HuffmanCode> &table)
{
if (!root)
{
return;
}
if (root->ch != '\0')
{
table[root->ch] = {prefix, root->freq};
}
buildHuffmanCodeTable(root->left, prefix + '0', table);
buildHuffmanCodeTable(root->right, prefix + '1', table);
}
// 将字符串按照Huffman编码表进行编码
string encode(const string &str, const map<char, HuffmanCode> &table)
{
string res = "";
for (char c : str)
{
res += table.at(c).code;
}
return res;
}
// 将Huffman编码按照Huffman树进行解码
string decode(const string &code, HuffmanNode *root)
{
string res = "";
HuffmanNode *node = root;
for (char c : code)
{
if (c == '0')
{
node = node->left;
}
else
{
node = node->right;
}
if (node->ch != '\0')
{
res += node->ch;
node = root;
}
}
return res;
}
int main()
{
// 输入字符串
string str;
getline(cin, str);
// 统计字符出现频率
vector<int> freqs(26, 0);
for (char c : str)
{
freqs[c - 'a']++;
}
freqs[' ' - 'a'] = count(str.begin(), str.end(), ' ');
// 构建Huffman树和编码表
HuffmanNode *root = buildHuffmanTree(freqs);
map<char, HuffmanCode> table;
buildHuffmanCodeTable(root, "", table);
// 输出编码表
for (auto it : table)
{
cout << it.first << ": " << it.second.code << endl;
}
// 编码和解码测试
string code = encode(str, table);
cout << "Encoded: " << code << endl;
string decoded = decode(code, root);
cout << "Decoded: " << decoded << endl;
return 0;
}
```
阅读全文