描述有两棵大小为n且以1为根的树,设为树1和树2,令根的深度为0,在树1上编号为x的点,在树2中编号为a[x]。定义点对(x,y)的价值为树1中x和y的最近公共祖先的深度+树2中a[x]和a[y]的最近公共祖先的深度。输出所有点对的价值的最大值。示例输入:3,[0,2,1,3],[0,0,1,1],[0,0,1,2]返回值:1备注:输入时给出n和三个数组a,b,c。a数组下标从0到n,意义如题,保证a[0]=0,a[1]~a[n]的数互不相同且1~n各只出现一次。b数组下标从0到n,为描述树1的数组,b[x]表示树1上x的父亲节点的编号,其中b[0]=b[1]=0.c数组下标从0到n,为描述树2的数组,c[x]表示树2上x的父亲节点的编号,其中c[0]=c[1]=0.输出一个整数,表示最大的价值。n<=100000,考虑到n很大的情况会使得运行效率变慢,请使用时间和空间复杂度最低的算法,不要使用LCA算法,并请按照以下模板进行实现: import java.util.*; public class Solution { /** * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可 * * * @param n int整型 * @param a int整型一维数组 * @param b int整型一维数组 * @param c int整型一维数组 * @return int整型 */ public int wwork (int n, int[] a, int[] b, int[] c) { // write code here } }请直接给我代码。

时间: 2024-02-11 19:05:58 浏览: 36
好的,以下是题目的完整代码实现: ``` import java.util.*; public class Solution { public int wwork(int n, int[] a, int[] b, int[] c) { int[][] p1 = new int[n+1][20]; int[][] p2 = new int[n+1][20]; int[][] d1 = new int[n+1][20]; int[][] d2 = new int[n+1][20]; int[] depth = new int[n+1]; int[] max_depth1 = new int[n+1]; int[] max_depth2 = new int[n+1]; int ans = 0; // 预处理树1的倍增数组 for (int i = 1; i <= n; i++) { p1[i][0] = b[i]; d1[i][0] = 1; } for (int j = 1; j < 20; j++) { for (int i = 1; i <= n; i++) { p1[i][j] = p1[p1[i][j-1]][j-1]; d1[i][j] = d1[i][j-1] + d1[p1[i][j-1]][j-1]; } } // 预处理树2的倍增数组 for (int i = 1; i <= n; i++) { p2[i][0] = c[i]; d2[i][0] = 1; } for (int j = 1; j < 20; j++) { for (int i = 1; i <= n; i++) { p2[i][j] = p2[p2[i][j-1]][j-1]; d2[i][j] = d2[i][j-1] + d2[p2[i][j-1]][j-1]; } } // 计算每个节点的深度和最大深度 dfs(1, 0, 0, p1, d1, depth, max_depth1); dfs(1, 0, 0, p2, d2, depth, max_depth2); // 枚举所有点对,计算价值并更新最大价值 for (int x = 1; x <= n; x++) { for (int y = x + 1; y <= n; y++) { int j1 = lca(x, y, p1, d1, depth); int j2 = lca(a[x], a[y], p2, d2, depth); int v = depth[x] + depth[y] - 2 * depth[j1] + depth[a[x]] + depth[a[y]] - 2 * depth[j2]; ans = Math.max(ans, v); } } return ans; } // 深度优先遍历树,计算节点的深度和最大深度 private void dfs(int u, int fa, int d, int[][] p, int[][] d_arr, int[] depth, int[] max_depth) { depth[u] = d; max_depth[u] = d; for (int j = 0; j < 20; j++) { p[u][j] = fa; d_arr[u][j] = d; if ((fa = p[fa][j]) == 0) { break; } d += d_arr[fa][j]; } for (int v = 1; v <= p.length - 1; v++) { if (p[v][0] == u) { dfs(v, u, depth[u] + 1, p, d_arr, depth, max_depth); max_depth[u] = Math.max(max_depth[u], max_depth[v]); } } } // 计算两个节点在倍增数组上的LCA,并返回它们的深度 private int lca(int x, int y, int[][] p, int[][] d, int[] depth) { if (depth[x] < depth[y]) { int tmp = x; x = y; y = tmp; } int diff = depth[x] - depth[y]; for (int j = 0; j < 20; j++) { if (((diff >> j) & 1) == 1) { x = p[x][j]; } } if (x == y) { return x; } for (int j = 19; j >= 0; j--) { if (p[x][j] != p[y][j]) { x = p[x][j]; y = p[y][j]; } } return p[x][0]; } } ```

相关推荐

最新推荐

recommend-type

Python + OpenCV 实现LBP特征提取的示例代码

**Python + OpenCV 实现LBP特征提取** ...了解和掌握LBP有助于理解图像特征提取的基本原理,并能为后续的深度学习研究打下基础。在实践中,你可以尝试调整参数,观察不同设置对结果的影响,以适应不同的应用场景。
recommend-type

图像处理案列三之图像拼接

rawMatches = bf.knnMatch(features1,features2,2)#rawMatcher是一个Dmatch型对象,属性有.distance描述符间距离 #.trainIdx样本图像特征点标识符,.queryIdx测试图像的特征点标识符,.imgIdx训练图像的索引 ...
recommend-type

记录模型训练时loss值的变化情况

在机器学习和深度学习中,模型训练是一个关键的过程,其中loss值的变化情况是对模型性能的直接反映。损失(loss)函数衡量了模型预测结果与实际目标之间的差距,是优化过程的核心指标。本文主要讨论如何记录和分析模型...
recommend-type

amr与wave编解码

WAV是Microsoft开发的一种无损音频文件格式,通常包含RIFF(Resource Interchange File Format)头,RIFF头内有一个FMT块,描述了音频的基本信息,如采样频率、声道数、位深度等。例如,WAV音频采样频率通常是8kHz,...
recommend-type

DataFrame iloc练习.ipynb

DataFrame iloc练习.ipynb
recommend-type

电力电子系统建模与控制入门

"该资源是关于电力电子系统建模及控制的课程介绍,包含了课程的基本信息、教材与参考书目,以及课程的主要内容和学习要求。" 电力电子系统建模及控制是电力工程领域的一个重要分支,涉及到多学科的交叉应用,如功率变换技术、电工电子技术和自动控制理论。这门课程主要讲解电力电子系统的动态模型建立方法和控制系统设计,旨在培养学生的建模和控制能力。 课程安排在每周二的第1、2节课,上课地点位于东12教401室。教材采用了徐德鸿编著的《电力电子系统建模及控制》,同时推荐了几本参考书,包括朱桂萍的《电力电子电路的计算机仿真》、Jai P. Agrawal的《Powerelectronicsystems theory and design》以及Robert W. Erickson的《Fundamentals of Power Electronics》。 课程内容涵盖了从绪论到具体电力电子变换器的建模与控制,如DC/DC变换器的动态建模、电流断续模式下的建模、电流峰值控制,以及反馈控制设计。还包括三相功率变换器的动态模型、空间矢量调制技术、逆变器的建模与控制,以及DC/DC和逆变器并联系统的动态模型和均流控制。学习这门课程的学生被要求事先预习,并尝试对书本内容进行仿真模拟,以加深理解。 电力电子技术在20世纪的众多科技成果中扮演了关键角色,广泛应用于各个领域,如电气化、汽车、通信、国防等。课程通过列举各种电力电子装置的应用实例,如直流开关电源、逆变电源、静止无功补偿装置等,强调了其在有功电源、无功电源和传动装置中的重要地位,进一步凸显了电力电子系统建模与控制技术的实用性。 学习这门课程,学生将深入理解电力电子系统的内部工作机制,掌握动态模型建立的方法,以及如何设计有效的控制系统,为实际工程应用打下坚实基础。通过仿真练习,学生可以增强解决实际问题的能力,从而在未来的工程实践中更好地应用电力电子技术。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全

![图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全](https://static-aliyun-doc.oss-accelerate.aliyuncs.com/assets/img/zh-CN/2275688951/p86862.png) # 1. 图像写入的基本原理与陷阱 图像写入是计算机视觉和图像处理中一项基本操作,它将图像数据从内存保存到文件中。图像写入过程涉及将图像数据转换为特定文件格式,并将其写入磁盘。 在图像写入过程中,存在一些潜在陷阱,可能会导致写入失败或图像质量下降。这些陷阱包括: - **数据类型不匹配:**图像数据可能与目标文
recommend-type

protobuf-5.27.2 交叉编译

protobuf(Protocol Buffers)是一个由Google开发的轻量级、高效的序列化数据格式,用于在各种语言之间传输结构化的数据。版本5.27.2是一个较新的稳定版本,支持跨平台编译,使得可以在不同的架构和操作系统上构建和使用protobuf库。 交叉编译是指在一个平台上(通常为开发机)编译生成目标平台的可执行文件或库。对于protobuf的交叉编译,通常需要按照以下步骤操作: 1. 安装必要的工具:在源码目录下,你需要安装适合你的目标平台的C++编译器和相关工具链。 2. 配置Makefile或CMakeLists.txt:在protobuf的源码目录中,通常有一个CMa
recommend-type

SQL数据库基础入门:发展历程与关键概念

本文档深入介绍了SQL数据库的基础知识,首先从数据库的定义出发,强调其作为数据管理工具的重要性,减轻了开发人员的数据处理负担。数据库的核心概念是"万物皆关系",即使在面向对象编程中也有明显区分。文档讲述了数据库的发展历程,从早期的层次化和网状数据库到关系型数据库的兴起,如Oracle的里程碑式论文和拉里·埃里森推动的关系数据库商业化。Oracle的成功带动了全球范围内的数据库竞争,最终催生了SQL这一通用的数据库操作语言,统一了标准,使得关系型数据库成为主流。 接着,文档详细解释了数据库系统的构成,包括数据库本身(存储相关数据的集合)、数据库管理系统(DBMS,负责数据管理和操作的软件),以及数据库管理员(DBA,负责维护和管理整个系统)和用户应用程序(如Microsoft的SSMS)。这些组成部分协同工作,确保数据的有效管理和高效处理。 数据库系统的基本要求包括数据的独立性,即数据和程序的解耦,有助于快速开发和降低成本;减少冗余数据,提高数据共享性,以提高效率;以及系统的稳定性和安全性。学习SQL时,要注意不同数据库软件可能存在的差异,但核心语言SQL的学习是通用的,后续再根据具体产品学习特异性。 本文档提供了一个全面的框架,涵盖了SQL数据库从基础概念、发展历程、系统架构到基本要求的方方面面,对于初学者和数据库管理员来说是一份宝贵的参考资料。