A*算法实现,python代码

时间: 2023-09-03 21:28:03 浏览: 107
PY

A*算法python实现

star5星 · 资源好评率100%
### 回答1: 好的,这是一个 A* 算法的 Python 实现代码示例: ```python import heapq import math class Node: def __init__(self, x, y, cost, priority): self.x = x self.y = y self.cost = cost self.priority = priority def __lt__(self, other): return self.priority < other.priority def astar(maze, start, end): start_node = Node(start[0], start[1], 0, 0) end_node = Node(end[0], end[1], 0, 0) heap = [] heapq.heappush(heap, start_node) came_from = {} cost_so_far = {} came_from[start_node] = None cost_so_far[start_node] = 0 while heap: current = heapq.heappop(heap) if current.x == end_node.x and current.y == end_node.y: break neighbors = [(current.x + dx, current.y + dy) for dx, dy in [(1, 0), (-1, 0), (0, 1), (0, -1)]] for next in neighbors: x, y = next if 0 <= x < len(maze) and 0 <= y < len(maze[0]) and maze[x][y] != "#": new_cost = cost_so_far[current] + 1 next_node = Node(x, y, new_cost, 0) if next_node not in cost_so_far or new_cost < cost_so_far[next_node]: cost_so_far[next_node] = new_cost priority = new_cost + math.sqrt((end_node.x - x) ** 2 + (end_node.y - y) ** 2) next_node.priority = priority heapq.heappush(heap, next_node) came_from[next_node] = current return came_from, cost_so_far ``` 上面的代码是 A* 算法的核心实现,其中 `maze` 是迷宫地图,`start` 是起点坐标,`end` 是终点坐标。它返回两个字典 `came_from` 和 `cost_so_far`,分别表示从起点到每个点的最短路径和最小代价。 ### 回答2: A*算法是一种常用于寻路问题的启发式搜索算法,下面是一个使用Python实现的简单示例代码: ```python from queue import PriorityQueue # 创建优先级队列用于存储待探索的节点 open_list = PriorityQueue() # 创建字典用于存储已探索过的节点 closed_list = {} # 创建字典用于存储每个节点的父节点 parents = {} # 创建字典用于存储每个节点的估计路径成本 g_scores = {} # 创建字典用于存储每个节点的启发式估计值 h_scores = {} # 定义启发式估计函数,这里使用曼哈顿距离作为启发式估计值 def heuristic(current, goal): return abs(current[0] - goal[0]) + abs(current[1] - goal[1]) # 定义A*算法函数 def A_star_search(start, goal, graph): # 将起始节点加入优先级队列,并设置起始节点的路径成本为0 open_list.put((0, start)) g_scores[start] = 0 while not open_list.empty(): # 从优先级队列中取出路径成本最低的节点 current = open_list.get()[1] if current == goal: path = [] # 根据父节点关系回溯找到最终路径 while current in parents: path.append(current) current = parents[current] return path[::-1] # 将当前节点加入已探索节点字典 closed_list[current] = True # 遍历当前节点的邻居节点 for neighbor in graph[current]: # 计算邻居节点的路径成本 g_score = g_scores[current] + graph[current][neighbor] if neighbor not in g_scores or g_score < g_scores[neighbor]: # 更新邻居节点的路径成本和启发式估计值 g_scores[neighbor] = g_score h_score = heuristic(neighbor, goal) f_score = g_score + h_score # 更新邻居节点的父节点 parents[neighbor] = current # 将邻居节点加入优先级队列 open_list.put((f_score, neighbor)) return None # 定义图的邻接表表示 graph = { 'A': {'B': 5, 'C': 3}, 'B': {'D': 2}, 'C': {'D': 6, 'E': 8}, 'D': {'E': 7, 'F': 9}, 'E': {'F': 2}, 'F': {} } start_node = 'A' goal_node = 'F' # 执行A*算法并打印结果 path = A_star_search(start_node, goal_node, graph) print("最短路径:", path) ``` 以上是一个简单的使用Python实现的A*算法示例代码,通过定义启发式估计函数、优先级队列等数据结构和算法逻辑,可以有效地寻找起始节点到目标节点的最短路径。 ### 回答3: A*算法是一种常用的启发式搜索算法,用于求解图中的最短路径问题。以下是一个用Python实现的A*算法代码示例: ``` # 估算从当前节点到目标节点的代价 def heuristic_cost_estimate(current, goal): return abs(current[0] - goal[0]) + abs(current[1] - goal[1]) # 获取当前节点的邻居节点 def get_neighbors(node, grid): neighbors = [] directions = [(1, 0), (-1, 0), (0, 1), (0, -1)] # 右、左、下、上 for direction in directions: neighbor = (node[0] + direction[0], node[1] + direction[1]) if 0 <= neighbor[0] < len(grid) and 0 <= neighbor[1] < len(grid[0]) and grid[neighbor[0]][neighbor[1]] == 0: neighbors.append(neighbor) return neighbors # 执行A*算法 def astar(start, goal, grid): open_set = [start] came_from = {} g_score = {start: 0} f_score = {start: heuristic_cost_estimate(start, goal)} while open_set: current = min(open_set, key=lambda x: f_score[x]) if current == goal: # 返回最短路径 path = [] while current in came_from: path.append(current) current = came_from[current] path.append(start) path.reverse() return path open_set.remove(current) neighbors = get_neighbors(current, grid) for neighbor in neighbors: tentative_g_score = g_score[current] + 1 # 相邻节点距离为1 if neighbor not in g_score or tentative_g_score < g_score[neighbor]: came_from[neighbor] = current g_score[neighbor] = tentative_g_score f_score[neighbor] = g_score[neighbor] + heuristic_cost_estimate(neighbor, goal) if neighbor not in open_set: open_set.append(neighbor) return None ``` 上述代码中,`heuristic_cost_estimate`函数用于估算从当前节点到目标节点的代价。`get_neighbors`函数用于获取当前节点的邻居节点,其中`grid`表示节点的二维矩阵,`0`表示可行走的节点。 `astar`函数执行A*算法,其中`start`表示起始节点,`goal`表示目标节点,`grid`表示节点的二维矩阵。算法使用了开放集合`open_set`、来自字典`came_from`、实际代价字典`g_score`和估计代价字典`f_score`来辅助搜索。算法通过循环遍历open_set中的节点,计算最短路径,并返回最短路径。 该代码示例可用于求解智能体在栅格地图中从起点到终点的最短路径问题。
阅读全文

相关推荐

最新推荐

recommend-type

Python3 A*寻路算法实现方式

下面是一个简单的A*算法实现步骤概述: 1. 初始化起点的G值为0,H值为启发式函数计算的结果,将其放入优先队列。 2. 当优先队列不为空时,取出F值最小的节点作为当前节点。 3. 如果当前节点是目标节点,结束搜索并...
recommend-type

Python实现ElGamal加密算法的示例代码

给出的Python代码示例中,`encrypt`和`decrypt`函数分别实现了这两个过程。`main`函数演示了如何使用这些函数来加密和解密一个125位的数字字符串(1000比特)。 ElGamal加密算法在实际应用中,如GnuPG和PGP,通常会...
recommend-type

Python实现七个基本算法的实例代码

【Python实现七大基础算法】 1. **顺序查找**: 顺序查找是一种简单的搜索...以上就是Python实现的七大基础算法的简要介绍和代码实现。这些算法在实际编程中有着广泛的应用,理解并掌握它们对于提升编程能力至关重要。
recommend-type

Python 实现大整数乘法算法的示例代码

Python代码实现Karatsuba算法时,通常需要递归处理每个部分,直到位数减少到可以直接相乘的程度。以下是一个简单的代码框架: ```python def karatsuba(a, b): # 基本情况,如果位数小于等于3,直接使用常规乘法 ...
recommend-type

vb.net+sql毕业设计管理系统(论文+系统)(2024hu).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。