pytorch代码,对超像素图像进行超像素池化,并输出超像素特征图并可视化
时间: 2024-04-30 08:18:29 浏览: 165
以下是使用PyTorch实现超像素池化的代码:
```python
import torch
import torchvision
from skimage.segmentation import slic
class SuperpixelPool(torch.nn.Module):
def __init__(self, n_segments):
super(SuperpixelPool, self).__init__()
self.n_segments = n_segments
def forward(self, x):
# Perform SLIC segmentation on input image
segments = slic(x.permute(1, 2, 0).numpy(), n_segments=self.n_segments)
segments = torch.from_numpy(segments).long()
# Compute mean of each superpixel
sp_mean = torch.zeros(self.n_segments, x.shape[-1], device=x.device)
for i in range(self.n_segments):
sp_mean[i] = x[segments == i].mean(dim=0)
# Compute pooled feature map
pooled = sp_mean[segments]
return pooled.permute(2, 0, 1), segments
```
这里使用了scikit-image库的SLIC算法进行超像素分割,然后计算每个超像素的平均值来进行池化。该模块的输入是一个大小为(C,H,W)的特征图,输出是一个大小为(C,n_segments,n_segments)的超像素特征图和一个大小为(H,W)的超像素分割结果。
下面是可视化超像素分割结果和超像素特征图的代码:
```python
import matplotlib.pyplot as plt
import numpy as np
# Load input image
img = torchvision.io.read_image('input_image.jpg').float()
img /= 255.0
# Apply superpixel pooling
spool = SuperpixelPool(n_segments=100)
pooled, segments = spool(img.unsqueeze(0))
# Visualize superpixel segmentation
plt.imshow(segments.cpu().numpy())
plt.axis('off')
plt.show()
# Visualize superpixel feature map
pooled = pooled.squeeze().cpu().numpy()
plt.imshow(np.transpose(pooled, (1, 2, 0)))
plt.axis('off')
plt.show()
```
这里使用了Matplotlib库来可视化超像素分割结果和超像素特征图。注意,为了使超像素特征图可视化,需要使用np.transpose函数将第一个维度(即通道维度)移到最后。
阅读全文