import torch import torch.nn.functional as F from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 可视化超像素索引映射 plt.imshow(segments, cmap='gray') plt.show() # 将超像素索引映射可视化 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') # 定义超像素池化函数 def superpixel_pooling(feature_map, segments): # 获取超像素数量和特征维度 n_segments = np.unique(segments).size n_channels = feature_map.shape[0] # 初始化超像素特征 pooled_features = torch.zeros((n_segments, n_channels)) # 对每个超像素内的像素特征进行聚合 for segment_id in range(n_segments): mask = (segments == segment_id).reshape(-1, 1, 1) mask = torch.from_numpy(mask).float() # 转换为 PyTorch 张量并进行类型转换 pooled_feature = (feature_map * mask).sum(dim=(1, 2)) / mask.sum() pooled_features[segment_id] = pooled_feature return pooled_features # 进行超像素池化 pooled_features = superpixel_pooling(img_tensor, segments) # 可视化超像素特征图 plt.imshow(pooled_features.transpose(0, 1), cmap='gray') plt.show(),上述代码出现问题:pooled_feature = (feature_map * mask).sum(dim=(1, 2)) / mask.sum() RuntimeError: The size of tensor a (3) must match the size of tensor b (262144) at non-singleton dimension 1,如何 修改
时间: 2024-03-16 10:42:07 浏览: 58
这个错误表明,在进行张量相乘时,两个张量的形状不匹配。具体来说,feature_map张量的第1维大小为3,而mask张量的第1维大小为262144。这可能是因为segments张量的形状不正确导致的。你可以尝试将segments张量的形状更改为与img_tensor张量的形状相同,即(1, H, W),其中H和W分别为图像的高度和宽度。可以使用img_tensor的形状信息来创建一个与之相同的全零张量,然后将segments张量的值复制到新张量的正确位置。修改后的代码如下:
```
import torch
import torch.nn.functional as F
from skimage.segmentation import slic, mark_boundaries
import torchvision.transforms as transforms
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
# 加载图像
image = Image.open('3.jpg')
# 转换为 PyTorch 张量
transform = transforms.ToTensor()
img_tensor = transform(image).unsqueeze(0)
# 将 PyTorch 张量转换为 Numpy 数组
img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0]
# 使用 SLIC 算法生成超像素标记图
segments = slic(img_np, n_segments=60, compactness=10)
# 将 segments 张量形状更改为与 img_tensor 相同
new_segments = torch.zeros((1, img_tensor.shape[2], img_tensor.shape[3]))
for i in range(segments.shape[0]):
for j in range(segments.shape[1]):
new_segments[0, i, j] = segments[i, j]
segments = new_segments.long()
# 可视化超像素索引映射
plt.imshow(segments, cmap='gray')
plt.show()
# 将超像素索引映射可视化
segment_img = mark_boundaries(img_np, segments)
# 将 Numpy 数组转换为 PIL 图像
segment_img = Image.fromarray((segment_img * 255).astype(np.uint8))
# 保存超像素索引映射可视化
segment_img.save('segment_map.jpg')
# 定义超像素池化函数
def superpixel_pooling(feature_map, segments):
# 获取超像素数量和特征维度
n_segments = np.unique(segments).size
n_channels = feature_map.shape[0]
# 初始化超像素特征
pooled_features = torch.zeros((n_segments, n_channels))
# 对每个超像素内的像素特征进行聚合
for segment_id in range(n_segments):
mask = (segments == segment_id).reshape(1, -1, 1, 1)
mask = torch.from_numpy(mask).float()
# 转换为 PyTorch 张量并进行类型转换
pooled_feature = (feature_map * mask).sum(dim=(2, 3)) / mask.sum()
pooled_features[segment_id] = pooled_feature
return pooled_features
# 进行超像素池化
pooled_features = superpixel_pooling(img_tensor, segments)
# 可视化超像素特征图
plt.imshow(pooled_features.transpose(0, 1), cmap='gray')
plt.show()
```
这个修改应该可以解决这个问题。
阅读全文