attgan = AttGAN(args) progressbar = Progressbar() writer = SummaryWriter(join('output', args.experiment_name, 'summary')) fixed_img_a, fixed_att_a = next(iter(valid_dataloader)) fixed_img_a = fixed_img_a.cuda() if args.gpu else fixed_img_a fixed_att_a = fixed_att_a.cuda() if args.gpu else fixed_att_a fixed_att_a = fixed_att_a.type(torch.float) sample_att_b_list = [fixed_att_a]
时间: 2024-04-17 07:23:11 浏览: 145
这段代码创建了 `AttGAN` 类的实例 `attgan`,以及 `Progressbar` 类的实例 `progressbar` 和 `SummaryWriter` 类的实例 `writer`。
首先,使用 `AttGAN(args)` 创建了一个名为 `attgan` 的 `AttGAN` 类的实例。这里将之前解析的命令行参数 `args` 作为参数传递给 `AttGAN` 的构造函数,用于初始化模型。
然后,创建了一个名为 `progressbar` 的 `Progressbar` 类的实例,用于在训练过程中显示进度条。
接下来,使用 `SummaryWriter(join('output', args.experiment_name, 'summary'))` 创建了一个名为 `writer` 的 `SummaryWriter` 类的实例。`join()` 函数用于构建路径,将目录名与路径名连接起来。这个实例将用于记录训练过程中的摘要信息,例如损失值和准确率等。
接下来,代码通过 `next(iter(valid_dataloader))` 从验证集数据加载器中获取了一个批次的图像和属性数据。这个数据将被用作固定的图像和属性,在训练过程中用于生成样本。图像和属性数据通过调用 `.cuda()` 方法将其移到 GPU 上(如果 `args.gpu` 为真),否则保持在 CPU 上。`.type(torch.float)` 用于将属性数据的类型转换为浮点型。
最后,创建了一个名为 `sample_att_b_list` 的列表,并将固定的属性数据 `fixed_att_a` 添加到列表中。这个列表将在后续的代码中用于生成样本。
总结起来,这段代码创建了 `AttGAN` 类的实例,并初始化了 `Progressbar` 类和 `SummaryWriter` 类的实例。然后,从验证集数据加载器中获取了固定的图像和属性数据,并创建了一个用于存储属性数据的列表。这些实例和数据将在训练过程中使用。
阅读全文