for img_a, att_a in progressbar(train_dataloader): attgan.train() img_a = img_a.cuda() if args.gpu else img_a att_a = att_a.cuda() if args.gpu else att_a idx = torch.randperm(len(att_a)) att_b = att_a[idx].contiguous() att_a = att_a.type(torch.float) att_b = att_b.type(torch.float) att_a_ = (att_a * 2 - 1) * args.thres_int

时间: 2024-04-17 21:23:08 浏览: 9
这段代码是一个训练循环,用于在每个训练批次中训练 `attgan` 模型。 首先,使用 `progressbar(train_dataloader)` 创建了一个进度条对象,用于在训练过程中显示进度。 然后,通过迭代 `train_dataloader` 获取每个批次的图像 `img_a` 和属性 `att_a`。在循环中,调用 `attgan.train()` 将 `attgan` 设置为训练模式。 接下来,将图像和属性数据移动到 GPU 上(如果 `args.gpu` 为真)或者保持在 CPU 上。使用 `torch.randperm(len(att_a))` 生成一个随机排列的索引,用于对属性数据进行乱序操作。然后,通过索引将 `att_a` 中的属性值重新排序得到 `att_b`。 之后,使用 `.type(torch.float)` 将属性数据的类型转换为浮点型。 最后,将属性数据经过一系列数学计算进行归一化处理。`att_a` 的值乘以2,并减去1,然后再乘以命令行参数 `args.thres_int` 的值。这个过程将属性数据缩放到 -1 到 1 的范围内。 总结起来,这段代码通过迭代训练数据加载器获取每个批次的图像和属性数据。然后,对属性数据进行一系列的预处理操作,包括属性值的随机乱序和归一化处理。这些数据将被用于训练 `attgan` 模型。
相关问题

attgan = AttGAN(args) progressbar = Progressbar() writer = SummaryWriter(join('output', args.experiment_name, 'summary')) fixed_img_a, fixed_att_a = next(iter(valid_dataloader)) fixed_img_a = fixed_img_a.cuda() if args.gpu else fixed_img_a fixed_att_a = fixed_att_a.cuda() if args.gpu else fixed_att_a fixed_att_a = fixed_att_a.type(torch.float) sample_att_b_list = [fixed_att_a]

这段代码创建了 `AttGAN` 类的实例 `attgan`,以及 `Progressbar` 类的实例 `progressbar` 和 `SummaryWriter` 类的实例 `writer`。 首先,使用 `AttGAN(args)` 创建了一个名为 `attgan` 的 `AttGAN` 类的实例。这里将之前解析的命令行参数 `args` 作为参数传递给 `AttGAN` 的构造函数,用于初始化模型。 然后,创建了一个名为 `progressbar` 的 `Progressbar` 类的实例,用于在训练过程中显示进度条。 接下来,使用 `SummaryWriter(join('output', args.experiment_name, 'summary'))` 创建了一个名为 `writer` 的 `SummaryWriter` 类的实例。`join()` 函数用于构建路径,将目录名与路径名连接起来。这个实例将用于记录训练过程中的摘要信息,例如损失值和准确率等。 接下来,代码通过 `next(iter(valid_dataloader))` 从验证集数据加载器中获取了一个批次的图像和属性数据。这个数据将被用作固定的图像和属性,在训练过程中用于生成样本。图像和属性数据通过调用 `.cuda()` 方法将其移到 GPU 上(如果 `args.gpu` 为真),否则保持在 CPU 上。`.type(torch.float)` 用于将属性数据的类型转换为浮点型。 最后,创建了一个名为 `sample_att_b_list` 的列表,并将固定的属性数据 `fixed_att_a` 添加到列表中。这个列表将在后续的代码中用于生成样本。 总结起来,这段代码创建了 `AttGAN` 类的实例,并初始化了 `Progressbar` 类和 `SummaryWriter` 类的实例。然后,从验证集数据加载器中获取了固定的图像和属性数据,并创建了一个用于存储属性数据的列表。这些实例和数据将在训练过程中使用。

if args.b_distribution == 'none': att_b_ = (att_b * 2 - 1) * args.thres_int if args.b_distribution == 'uniform': att_b_ = (att_b * 2 - 1) * \ torch.rand_like(att_b) * \ (2 * args.thres_int) if args.b_distribution == 'truncated_normal': att_b_ = (att_b * 2 - 1) * \ (torch.fmod(torch.randn_like(att_b), 2) + 2) / 4.0 * \ (2 * args.thres_int) if (it+1) % (args.n_d+1) != 0: errD = attgan.trainD(img_a, att_a, att_a_, att_b, att_b_) add_scalar_dict(writer, errD, it+1, 'D') else: errG = attgan.trainG(img_a, att_a, att_a_, att_b, att_b_) add_scalar_dict(writer, errG, it+1, 'G') progressbar.say(epoch=epoch, iter=it+1, d_loss=errD['d_loss'], g_loss=errG['g_loss'])

这段代码包含了两个条件语句块。 第一个条件语句块根据命令行参数 `args.b_distribution` 的值选择不同的属性 B 分布。如果 `args.b_distribution` 的值为 `'none'`,则执行第一个条件分支。在该分支中,通过 `(att_b * 2 - 1) * args.thres_int` 对属性 B 进行归一化处理,将其缩放到 -`args.thres_int` 到 `args.thres_int` 的范围内。 如果 `args.b_distribution` 的值为 `'uniform'`,则执行第二个条件分支。在该分支中,先通过 `(att_b * 2 - 1)` 对属性 B 进行归一化处理,然后使用 `torch.rand_like(att_b)` 生成与属性 B 相同形状的随机张量,并且每个元素的值在 [0, 1) 的范围内。最后,通过 `(2 * args.thres_int)` 将随机张量缩放到 -`args.thres_int` 到 `args.thres_int` 的范围内。 如果 `args.b_distribution` 的值为 `'truncated_normal'`,则执行第三个条件分支。在该分支中,先通过 `(att_b * 2 - 1)` 对属性 B 进行归一化处理,然后使用 `torch.fmod(torch.randn_like(att_b), 2) + 2` 生成一个符合截断正态分布的随机张量,然后除以 4.0 进行归一化处理。最后,通过 `(2 * args.thres_int)` 将随机张量缩放到 -`args.thres_int` 到 `args.thres_int` 的范围内。 接下来,根据 `(it+1) % (args.n_d+1) != 0` 的条件判断选择执行训练判别器或者生成器的代码块。 如果条件为真,则执行训练判别器的代码块。调用 `attgan.trainD()` 对判别器进行训练,传入图像数据 `img_a`、属性数据 `att_a`、处理后的属性数据 `att_a_`、属性数据 `att_b` 和处理后的属性数据 `att_b_`。将得到的误差值 `errD` 通过 `add_scalar_dict()` 添加到摘要信息中,并指定摘要信息的名称为 `'D'`。 如果条件为假,则执行训练生成器的代码块。调用 `attgan.trainG()` 对生成器进行训练,传入相同的参数。将得到的误差值 `errG` 通过 `add_scalar_dict()` 添加到摘要信息中,并指定摘要信息的名称为 `'G'`。然后,通过 `progressbar.say()` 打印出当前 epoch、迭代次数、判别器损失和生成器损失。 总结起来,这段代码根据命令行参数选择不同的属性 B 分布,并对属性数据进行归一化处理。然后,根据迭代次数的奇偶性选择训练判别器或者生成器,并将得到的误差值记录到摘要信息中。最后,打印出当前的训练进度和损失值。

相关推荐

最新推荐

recommend-type

RTL8761ATT-CG_Datasheet_1.0.pdf

RTL8761ATT-CG_Datasheet_1.0.pdf 很不容易搞到的技术手册
recommend-type

setuptools-40.7.3-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.