theano初始化VGG网络的参数
时间: 2023-06-26 09:09:03 浏览: 100
keras实现VGG16 CIFAR10数据集方式
要初始化VGG网络的参数,可以按照以下步骤:
1. 导入必要的库和模块:
```
import numpy as np
import theano
import theano.tensor as T
import lasagne
```
2. 定义VGG网络的结构,可以参考如下代码:
```
def build_model(input_var=None):
network = lasagne.layers.InputLayer(shape=(None, 3, 224, 224), input_var=input_var)
network = lasagne.layers.Conv2DLayer(network, num_filters=64, filter_size=(3, 3), stride=1, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
network = lasagne.layers.Conv2DLayer(network, num_filters=64, filter_size=(3, 3), stride=1, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2), stride=2)
network = lasagne.layers.Conv2DLayer(network, num_filters=128, filter_size=(3, 3), stride=1, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
network = lasagne.layers.Conv2DLayer(network, num_filters=128, filter_size=(3, 3), stride=1, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2), stride=2)
network = lasagne.layers.Conv2DLayer(network, num_filters=256, filter_size=(3, 3), stride=1, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
network = lasagne.layers.Conv2DLayer(network, num_filters=256, filter_size=(3, 3), stride=1, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
network = lasagne.layers.Conv2DLayer(network, num_filters=256, filter_size=(3, 3), stride=1, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2), stride=2)
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), stride=1, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), stride=1, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), stride=1, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2), stride=2)
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), stride=1, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), stride=1, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), stride=1, pad=1, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform())
network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2), stride=2)
return network
```
这里定义了一个包含13个卷积层和5个最大池化层的VGG网络,每个卷积层都使用了GlorotUniform初始化方法。
3. 加载预训练的权重文件:
```
def load_weights():
# Load the pre-trained weights
url = 'https://s3.amazonaws.com/lasagne/recipes/pretrained/imagenet/vgg19_normalized.pkl'
filename = 'vgg19_normalized.pkl'
if not os.path.exists(filename):
urllib.urlretrieve(url, filename)
with open(filename, 'rb') as f:
model = pickle.load(f)
return model['param values']
```
这里使用了pickle库来加载预训练的权重文件,并返回其中的参数值。
4. 初始化参数:
```
input_var = T.tensor4('inputs')
target_var = T.ivector('targets')
network = build_model(input_var)
weights = load_weights()
lasagne.layers.set_all_param_values(network, weights)
```
这里首先定义了输入和目标变量,然后调用了前面定义的build_model函数来构建VGG网络,接着调用load_weights函数加载预训练的权重文件,并使用lasagne.layers.set_all_param_values函数将参数值设置到网络中。
5. 编译模型:
```
prediction = lasagne.layers.get_output(network)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
loss = loss.mean()
params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.momentum(loss, params, learning_rate=0.01, momentum=0.9)
train_fn = theano.function([input_var, target_var], loss, updates=updates)
```
这里首先定义了预测值和损失函数,然后使用lasagne.layers.get_all_params函数获取所有可训练的参数,接着使用lasagne.updates.momentum函数定义更新规则,最后使用theano.function函数编译模型。
现在,我们就完成了VGG网络参数的初始化。
阅读全文