用CNN和MMD进行样本迁移pytorch
时间: 2023-07-18 20:42:20 浏览: 178
以下是使用 CNN 和 MMD 进行样本迁移的 PyTorch 代码示例:
1. 定义数据集和数据加载器
```
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torch.utils.data as data
# 定义数据预处理
transform = transforms.Compose([
transforms.Resize(32),
transforms.CenterCrop(32),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 加载训练集和测试集
train_set = dset.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_set = dset.CIFAR10(root='./data', train=False, download=True, transform=transform)
# 定义数据加载器
train_loader = data.DataLoader(train_set, batch_size=64, shuffle=True, num_workers=2)
test_loader = data.DataLoader(test_set, batch_size=64, shuffle=False, num_workers=2)
```
2. 定义模型
```
import torch.nn as nn
import torch.nn.functional as F
# 定义卷积神经网络
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.fc1 = nn.Linear(128 * 4 * 4, 256)
self.fc2 = nn.Linear(256, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv3(x))
x = F.max_pool2d(x, 2)
x = x.view(-1, 128 * 4 * 4)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 创建模型实例
model = CNN()
```
3. 定义优化器和损失函数
```
import torch.optim as optim
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 定义损失函数
criterion = nn.CrossEntropyLoss()
```
4. 定义 MMD 损失函数
```
import torch
def mmd_loss(x_src, x_tgt, kernel_mul=2.0, kernel_num=5):
"""
x_src: 源域数据
x_tgt: 目标域数据
kernel_mul: RBF 核的宽度
kernel_num: RBF 核的数量
"""
batch_size = int(x_src.size()[0])
kernels = []
for i in range(kernel_num):
sigma = kernel_mul ** i
kernels.append(gaussian_kernel(x_src, x_tgt, sigma))
loss = 0
for kernel in kernels:
loss += torch.mean(kernel)
return loss / kernel_num
def gaussian_kernel(x_src, x_tgt, sigma):
"""
x_src: 源域数据
x_tgt: 目标域数据
sigma: RBF 核的宽度
"""
n = int(x_src.size()[0])
m = int(x_tgt.size()[0])
x = torch.cat([x_src, x_tgt], dim=0)
xx = torch.mm(x, x.t())
x2 = torch.sum(x ** 2, dim=1, keepdim=True)
exponent = xx - 0.5 * (x2 + x2.t())
kernel = torch.exp(-exponent / (2 * sigma ** 2))
return kernel[:n, :n] + kernel[n:, n:] - kernel[:n, n:] - kernel[n:, :n]
```
5. 训练模型
```
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
# 将数据分为源域和目标域数据
src_inputs = inputs[:32]
tgt_inputs = inputs[32:]
# 在源域数据上进行前向传播和反向传播
src_outputs = model(src_inputs)
src_loss = criterion(src_outputs, labels[:32])
src_loss.backward()
# 在目标域数据上进行前向传播和反向传播
tgt_outputs = model(tgt_inputs)
tgt_loss = mmd_loss(src_outputs, tgt_outputs)
tgt_loss.backward()
optimizer.step()
# 输出统计信息
running_loss += src_loss.item() + tgt_loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
```
在每个训练循环中,将数据分为源域和目标域数据,分别在源域和目标域数据上进行前向传播和反向传播。在目标域数据上计算 MMD 损失函数,并通过反向传播更新模型参数。
阅读全文