class MHAlayer(nn.Module): def __init__(self, n_heads, cat, input_dim, hidden_dim, attn_dropout=0.1, dropout=0): super(MHAlayer, self).__init__() self.n_heads = n_heads self.input_dim = input_dim self.hidden_dim = hidden_dim self.head_dim = self.hidden_dim / self.n_heads self.dropout = nn.Dropout(attn_dropout) self.dropout1 = nn.Dropout(dropout) self.norm = 1 / math.sqrt(self.head_dim) self.w = nn.Linear(input_dim * cat, hidden_dim, bias=False) self.k = nn.Linear(input_dim, hidden_dim, bias=False) self.v = nn.Linear(input_dim, hidden_dim, bias=False) self.fc = nn.Linear(hidden_dim, hidden_dim, bias=False) def forward(self, state_t, context, mask): ''' :param state_t: (batch_size,1,input_dim*3(GATembeding,fist_node,end_node)) :param context: (batch_size,n_nodes,input_dim) :param mask: selected nodes (batch_size,n_nodes) :return: ''' batch_size, n_nodes, input_dim = context.size() Q = self.w(state_t).view(batch_size, 1, self.n_heads, -1) K = self.k(context).view(batch_size, n_nodes, self.n_heads, -1) V = self.v(context).view(batch_size, n_nodes, self.n_heads, -1) Q, K, V = Q.transpose(1, 2), K.transpose(1, 2), V.transpose(1, 2) compatibility = self.norm * torch.matmul(Q, K.transpose(2, 3)) compatibility = compatibility.squeeze(2) mask = mask.unsqueeze(1).expand_as(compatibility) u_i = compatibility.masked_fill(mask.bool(), float("-inf")) scores = F.softmax(u_i, dim=-1) scores = scores.unsqueeze(2) out_put = torch.matmul(scores, V) out_put = out_put.squeeze(2).view(batch_size, self.hidden_dim) out_put = self.fc(out_put) return out_put

时间: 2024-04-27 16:19:37 浏览: 188
这是一个PyTorch的神经网络模型定义,其中定义了一个叫做MHAlayer的模块。这个模块实现了Multi-Head Attention机制,用于文本序列处理中的Attention机制。具体来说,这个模块输入了三个张量:state_t,context和mask,其中state_t是一个(batch_size,1,input_dim*3)的张量,context是一个(batch_size,n_nodes,input_dim)的张量,mask是一个(batch_size,n_nodes)的张量,表示需要进行Attention的节点。在模块中,首先用线性层将state_t和context分别映射到hidden_dim维的向量,并将输入的维度变为(batch_size, n_heads, hidden_dim),然后计算查询向量Q,键向量K和值向量V,并将它们都分成n_heads份。接下来,计算对应的Attention得分compatibility,并根据mask将需要Attention的节点的得分设置为负无穷。然后对得分进行softmax归一化,并加权求和得到Attention的输出。最后再通过一个线性层转换维度,并返回输出。
相关问题

你现在利用pytorch定义了两个神经网络,一个是3层用全连接层构造成的MLP,还有一个是图注意力网络。两个输出均是(16,307,12),均未def encode部分。你现在需要把这两个神经网络的输出拼接后送入VAE计算隐变量,VAE的两个编码器就是这两个神经网络,然后解码生成新的交通数据集。这个pytorch应该怎么写,请给我一个比较完整的pytorch代码。原来的数据集形状为(16992,307,12,3)的数据集,其中,16992是时间段数,307是传感器节点个数,12是历史步长,3是特征维度。第一个特征维度是速度,第二个特征维度是根据邻接矩阵产生的度特征,第三个特征维度是星期。现在按照batch_size=16送入模型时,输入为(16,307,12,3)得到的输出均是(16,307,12),并最好告诉我每一行在做什么,相应输出维度应该是什么。MLP的相关参数是input_dim = 36,hidden_dim = 64,output_dim = 12,history_length=12,GAT的相关参数是num_heads = 8,in_dim = 3,hidden_dim = 64,out_dim = 36,输出维度是相同的。最后,请随机生成形状为(16992,307,12,3)的数据集,按批次送入模型,让我自行看看模型的效果

好的,我会根据您的要求给出一个比较完整的 PyTorch 代码。首先,我们需要定义 MLP 和 GAT 神经网络的模型结构和前向传播过程,然后将两个网络的输出进行拼接,送入 VAE 计算隐变量。 ```python import torch import torch.nn as nn import torch.nn.functional as F from torch_geometric.nn import GATConv # 定义 MLP 神经网络 class MLP(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, history_length): super(MLP, self).__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.history_length = history_length self.fc1 = nn.Linear(input_dim*history_length, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, output_dim) def forward(self, x): x = x.view(-1, self.input_dim*self.history_length) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x # 定义 GAT 神经网络 class GAT(nn.Module): def __init__(self, num_heads, in_dim, hidden_dim, out_dim): super(GAT, self).__init__() self.num_heads = num_heads self.in_dim = in_dim self.hidden_dim = hidden_dim self.out_dim = out_dim self.conv1 = GATConv(in_dim, hidden_dim, heads=num_heads) self.conv2 = GATConv(hidden_dim*num_heads, out_dim, heads=1) def forward(self, x, edge_index): x = F.relu(self.conv1(x, edge_index)) x = self.conv2(x, edge_index) return x # 定义 VAE 神经网络 class VAE(nn.Module): def __init__(self, encoder1, encoder2, latent_dim): super(VAE, self).__init__() self.encoder1 = encoder1 self.encoder2 = encoder2 self.latent_dim = latent_dim self.fc1 = nn.Linear(encoder1.output_dim+encoder2.output_dim, 256) self.fc2 = nn.Linear(256, latent_dim) self.fc3 = nn.Linear(256, latent_dim) self.fc4 = nn.Linear(latent_dim, 256) self.fc5 = nn.Linear(256, encoder1.output_dim+encoder2.output_dim) def encode(self, x1, x2): h1 = self.encoder1(x1) h2 = self.encoder2(x2) h = torch.cat([h1, h2], dim=-1) h = F.relu(self.fc1(h)) mu = self.fc2(h) logvar = self.fc3(h) return mu, logvar def reparameterize(self, mu, logvar): std = torch.exp(0.5*logvar) eps = torch.randn_like(std) z = mu + eps*std return z def decode(self, z): h = F.relu(self.fc4(z)) x = self.fc5(h) return x def forward(self, x1, x2): mu, logvar = self.encode(x1, x2) z = self.reparameterize(mu, logvar) x = self.decode(z) return x, mu, logvar ``` 在上面的代码中,MLP 和 GAT 神经网络的输入都是形状为 (batch_size, 307, 12, 3) 的张量,即 (batch_size, num_nodes, history_length, num_features),其中 num_nodes=307,history_length=12,num_features=3。MLP 的输出和 GAT 的输出都是形状为 (batch_size, 307, 12, 12) 的张量,即 (batch_size, num_nodes, history_length, output_dim),其中 output_dim=12。这里的 MLP 神经网络和 GAT 神经网络的输出维度是相同的,因为我们最后需要将它们的输出进行拼接。 在 VAE 神经网络中,我们将 MLP 和 GAT 神经网络的输出进行拼接,并将拼接后的张量送入 VAE 网络。VAE 网络的输入是形状为 (batch_size, 307, 12, 24) 的张量,即 (batch_size, num_nodes, history_length, output_dim_1+output_dim_2),其中 output_dim_1=output_dim_2=12。VAE 神经网络的输出是形状为 (batch_size, 307, 12, 24) 的张量,即 (batch_size, num_nodes, history_length, output_dim_1+output_dim_2),其中 output_dim_1=output_dim_2=12,表示经过 VAE 计算后的交通数据集。 接下来,我们需要随机生成形状为 (16992, 307, 12, 3) 的数据集,并按批次送入模型进行测试。代码如下: ```python import numpy as np from torch.utils.data import Dataset, DataLoader # 定义数据集类 class TrafficDataset(Dataset): def __init__(self, data): self.data = data def __len__(self): return self.data.shape[0] def __getitem__(self, idx): return self.data[idx] # 随机生成数据集 data = np.random.rand(16992, 307, 12, 3) batch_size = 16 # 创建数据加载器 dataset = TrafficDataset(data) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) # 创建 MLP 和 GAT 神经网络 mlp = MLP(input_dim=36, hidden_dim=64, output_dim=12, history_length=12) gat = GAT(num_heads=8, in_dim=3, hidden_dim=64, out_dim=36) # 创建 VAE 神经网络 vae = VAE(encoder1=mlp, encoder2=gat, latent_dim=16) # 定义优化器和损失函数 optimizer = torch.optim.Adam(vae.parameters(), lr=1e-3) mse_loss = nn.MSELoss() # 训练模型 vae.train() for epoch in range(10): for i, batch in enumerate(dataloader): optimizer.zero_grad() x = batch.float().to(device) x1 = x[:, :, :, :12] # 使用前12个特征作为 MLP 神经网络的输入 x2 = x[:, :, :, 12:] # 使用后12个特征作为 GAT 神经网络的输入 recon_x, mu, logvar = vae(x1, x2) loss = mse_loss(recon_x, x) loss += -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) loss.backward() optimizer.step() if (i+1) % 1000 == 0: print("Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}" .format(epoch+1, 10, i+1, len(dataloader), loss.item())) # 测试模型 vae.eval() with torch.no_grad(): for i, batch in enumerate(dataloader): x = batch.float().to(device) x1 = x[:, :, :, :12] # 使用前12个特征作为 MLP 神经网络的输入 x2 = x[:, :, :, 12:] # 使用后12个特征作为 GAT 神经网络的输入 recon_x, _, _ = vae(x1, x2) print("Batch [{}/{}], Reconstruction Error: {:.4f}" .format(i+1, len(dataloader), mse_loss(recon_x, x).item())) ``` 在上面的代码中,我们首先定义了一个 TrafficDataset 类,用于生成形状为 (16992, 307, 12, 3) 的随机数据集。然后,我们创建了 MLP 和 GAT 神经网络,并将它们作为 VAE 神经网络的两个编码器。接着,我们定义了优化器和损失函数,并在训练过程中计算重构误差和 KL 散度。最后,我们按批次送入数据集,计算重构误差,以测试模型的效果。

你现在利用pytorch定义了两个神经网络,一个是3层用全连接层构造成的MLP,还有一个是图注意力网络。两个输出均是(16,307,12)。你现在需要把这两个神经网络作为VAE的两个编码器,将它们的输出拼接后计算隐变量,然后解码生成新的交通数据集。这个pytorch应该怎么写,请给我一个比较完整的pytorch代码。原来的数据集形状为(16992,307,12,3)的数据集,其中,16992是时间段数,307是传感器节点个数,12是历史步长,3是特征维度。第一个特征维度是速度,第二个特征维度是根据邻接矩阵产生的度特征,第三个特征维度是星期。现在按照batch_size=16送入模型得到的输出均是(16,307,12),并最好告诉我每一行在做什么,相应输出维度应该是什么。两个class均不想删除,那decoder怎么写,两个输入参数是不一样的,例如MLP的相关参数是input_dim = 36,hidden_dim = 64,output_dim = 12,history_length=12,GAT的相关参数是num_heads = 8,in_dim = 3,hidden_dim = 64,out_dim = 36,输出维度是相同的。最后,请随机生成形状为(16992,307,12,3)的数据集,按批次送入模型,让我自行看看模型的效果

好的,以下是一个比较完整的PyTorch代码,实现了VAE的编码器和解码器部分,其中编码器部分使用了两个神经网络,分别是MLP和GAT网络: ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader # 定义MLP网络 class MLP(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, history_length): super(MLP, self).__init__() self.fc1 = nn.Linear(input_dim * history_length, hidden_dim) self.fc21 = nn.Linear(hidden_dim, output_dim) self.fc22 = nn.Linear(hidden_dim, output_dim) def encode(self, x): x = x.view(x.size(0), -1) h1 = F.relu(self.fc1(x)) return self.fc21(h1), self.fc22(h1) def forward(self, x): mu, logvar = self.encode(x) std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu), mu, logvar # 定义GAT网络 class GAT(nn.Module): def __init__(self, num_heads, in_dim, hidden_dim, out_dim): super(GAT, self).__init__() self.num_heads = num_heads self.fc = nn.Linear(in_dim, hidden_dim) self.attn_fc = nn.Linear(hidden_dim, num_heads * out_dim) def forward(self, x, adj): x = self.fc(x) N = x.size()[1] x = x.view(-1, N, self.num_heads, int(x.size()[2] / self.num_heads)) x = x.permute(0, 2, 1, 3) a = self.attn_fc(x) a = a.view(-1, self.num_heads, N, N) attn = F.softmax(a, dim=-1) h = torch.matmul(attn, x) h = h.permute(0, 2, 1, 3).contiguous() h = h.view(-1, N, int(x.size()[2])) return h # 定义VAE模型 class VAE(nn.Module): def __init__(self, mlp_input_dim, mlp_hidden_dim, mlp_output_dim, mlp_history_length, gat_num_heads, gat_in_dim, gat_hidden_dim, gat_out_dim): super(VAE, self).__init__() self.mlp = MLP(mlp_input_dim, mlp_hidden_dim, mlp_output_dim, mlp_history_length) self.gat = GAT(gat_num_heads, gat_in_dim, gat_hidden_dim, gat_out_dim) self.fc1 = nn.Linear(mlp_output_dim + gat_out_dim, 256) self.fc2 = nn.Linear(256, 307 * 12 * 3) def decode(self, z): h = F.relu(self.fc1(z)) return torch.sigmoid(self.fc2(h)) def forward(self, x, adj): z, mu, logvar = self.mlp(x) gat_out = self.gat(x, adj) z = torch.cat([z, gat_out], dim=-1) return self.decode(z), mu, logvar # 定义数据集 class RandomDataset(Dataset): def __init__(self, shape): self.shape = shape def __getitem__(self, index): return torch.randn(self.shape), torch.randn(self.shape) def __len__(self): return 1000 # 随机生成数据集 dataset = RandomDataset((16, 307, 12, 3)) dataloader = DataLoader(dataset, batch_size=16, shuffle=True) # 初始化模型 mlp_input_dim = 36 mlp_hidden_dim = 64 mlp_output_dim = 12 mlp_history_length = 12 gat_num_heads = 8 gat_in_dim = 3 gat_hidden_dim = 64 gat_out_dim = 36 vae = VAE(mlp_input_dim, mlp_hidden_dim, mlp_output_dim, mlp_history_length, gat_num_heads, gat_in_dim, gat_hidden_dim, gat_out_dim) # 训练模型 optimizer = torch.optim.Adam(vae.parameters(), lr=1e-4) def loss_function(recon_x, x, mu, logvar): BCE = F.binary_cross_entropy(recon_x, x.view(-1, 307 * 12 * 3), reduction='sum') KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return BCE + KLD num_epochs = 10 for epoch in range(num_epochs): for i, data in enumerate(dataloader): x, adj = data optimizer.zero_grad() recon_x, mu, logvar = vae(x, adj) loss = loss_function(recon_x, x, mu, logvar) loss.backward() optimizer.step() if i % 10 == 0: print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f' % (epoch+1, num_epochs, i+1, len(dataset)//16, loss.item())) # 测试模型 test_data = torch.randn(16992, 307, 12, 3) test_adj = torch.randn(16992, 307, 307) test_result = [] batch_size = 16 num_batches = test_data.shape[0] // batch_size for i in range(num_batches): x = test_data[i*batch_size:(i+1)*batch_size] adj = test_adj[i*batch_size:(i+1)*batch_size] recon_x, _, _ = vae(x, adj) test_result.append(recon_x.detach().numpy()) test_result = np.concatenate(test_result, axis=0) print(test_result.shape) ``` 在上面的代码中,MLP是一个包含三个全连接层的神经网络,GAT是一个基于图注意力机制的神经网络。VAE模型将这两个神经网络作为两个编码器,将它们的输出拼接后计算隐变量,然后解码生成新的交通数据集。输入数据集的形状为(16992,307,12,3),其中,16992是时间段数,307是传感器节点个数,12是历史步长,3是特征维度。第一个特征维度是速度,第二个特征维度是根据邻接矩阵产生的度特征,第三个特征维度是星期。按批次送入模型时,每个batch的大小为16。 在训练过程中,我们使用了随机生成的数据集进行训练,并且使用Adam优化器进行优化。在测试过程中,我们随机生成了一组符合原始数据集形状的数据集,并按批次送入模型生成新的交通数据集。
阅读全文

相关推荐

最新推荐

recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

(177406840)JAVA图书管理系统毕业设计(源代码+论文).rar

JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代
recommend-type

(35734838)信号与系统实验一实验报告

内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【天线性能提升密籍】:深入探究均匀线阵方向图设计原则及案例分析

![均匀线阵方向图](https://img-blog.csdnimg.cn/img_convert/0080eea0ca4af421d2bc9c74b87376c4.webp?x-oss-process=image/format,png) # 摘要 本文深入探讨了均匀线阵天线的基础理论及其方向图设计,旨在提升天线系统的性能和应用效能。文章首先介绍了均匀线阵及方向图的基本概念,并阐述了方向图设计的理论基础,包括波束形成与主瓣及副瓣特性的控制。随后,论文通过设计软件工具的应用和实际天线系统调试方法,展示了方向图设计的实践技巧。文中还包含了一系列案例分析,以实证研究验证理论,并探讨了均匀线阵性能