Good. So how to use reducelronplateau scheduler in this plmodel? Change the previous code.
时间: 2024-05-01 12:16:22 浏览: 139
Sure, here's an example of how to use the ReduceLROnPlateau scheduler in a PyTorch Lightning model:
```python
import pytorch_lightning as pl
import torch.optim as optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
class MyModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.layer1 = nn.Linear(10, 5)
self.layer2 = nn.Linear(5, 1)
def forward(self, x):
x = F.relu(self.layer1(x))
x = self.layer2(x)
return x
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.mse_loss(y_hat, y)
self.log('train_loss', loss)
return loss
def configure_optimizers(self):
optimizer = optim.Adam(self.parameters(), lr=1e-3)
scheduler = ReduceLROnPlateau(optimizer, 'min', patience=5)
return {'optimizer': optimizer, 'lr_scheduler': scheduler, 'monitor': 'train_loss'}
trainer = pl.Trainer(max_epochs=100)
model = MyModel()
trainer.fit(model, train_dataloader)
```
Here, we define the ReduceLROnPlateau scheduler in the `configure_optimizers` method, and pass it as a dictionary to the `Trainer` object. The `patience` argument represents the number of epochs to wait before reducing the learning rate if the validation loss does not improve. The `'min'` mode indicates that we want to reduce the learning rate if the validation loss stops decreasing. Finally, we set the `monitor` argument to `'train_loss'` since we want to monitor the training loss for this example.
阅读全文