使用matlab写一个算法实现以下要求:首先画一个含有多边形岛屿以及一个圆形岛屿的型腔,然后,通过一系列的平行线与型腔以及岛屿的轮廓边界进行求交,并将交点存储起来,按照一定的算法,将这些交点顺次连接起来,要求是这些交点连起来的线避开岛屿,请给我写一个可以参考的matlab代码
时间: 2024-03-19 12:45:04 浏览: 69
基于顶点的复杂多边形求交算法的实现
以下是一个简单的Matlab代码示例,实现了你所要求的算法。首先,你需要定义一个含有多边形和圆形岛屿以及一个型腔的图形。此处我使用了一个简单的多边形和一个圆形,你可以根据需要进行更改。
```
% Define the polygon
xpoly = [-2 -2 2 2];
ypoly = [0 2 2 0];
% Define the circle
theta = linspace(0, 2*pi, 100);
xcir = 0.5*cos(theta);
ycir = 0.5*sin(theta);
```
然后,你需要定义一系列平行线,进行求交。此处我使用了10条平行线,你可以根据需要进行更改。
```
% Define the parallel lines
nlines = 10;
d = linspace(-2, 2, nlines);
xline1 = linspace(-10, 10, 100);
xline2 = linspace(-10, 10, 100);
yline1 = zeros(size(xline1));
yline2 = zeros(size(xline2));
for i = 1:nlines
yline1 = yline1 + d(i);
yline2 = yline2 + d(i) + 0.5;
plot([xline1(1) xline1(end)], [yline1(1) yline1(end)], 'k--');
plot([xline2(1) xline2(end)], [yline2(1) yline2(end)], 'k--');
end
```
接下来,你需要求出每条平行线与图形的交点,并将它们存储起来。
```
% Find intersection points
npoints = 0;
xint = [];
yint = [];
for i = 1:nlines
[xint1, yint1] = polyxpoly(xline1, yline1, xpoly, ypoly);
[xint2, yint2] = polyxpoly(xline2, yline2, xpoly, ypoly);
[xcirint, ycirint] = polyxpoly(xline1, yline1, xcir, ycir);
xint = [xint xint1 xint2 xcirint];
yint = [yint yint1 yint2 ycirint];
npoints = npoints + length(xint1) + length(xint2) + length(xcirint);
yline1 = yline1 + 0.5;
yline2 = yline2 + 0.5;
end
```
最后,你需要将交点按照一定的算法顺次连接起来,避开岛屿。这里我使用了一个简单的算法,即连接最近的两个交点,然后检查连接线是否与岛屿相交,如果相交,则连接下一个最近的交点,直到所有交点都被连接起来。
```
% Connect intersection points
hold on;
plot(xpoly, ypoly, 'k', 'LineWidth', 2);
plot(xcir, ycir, 'k', 'LineWidth', 2);
xint1 = xint(1:npoints/2);
yint1 = yint(1:npoints/2);
xint2 = xint(npoints/2+1:end);
yint2 = yint(npoints/2+1:end);
xint1 = xint1(end:-1:1);
yint1 = yint1(end:-1:1);
xint2 = xint2(end:-1:1);
yint2 = yint2(end:-1:1);
xint1 = [xint1(1) xint1];
yint1 = [yint1(1) yint1];
xint2 = [xint2(1) xint2];
yint2 = [yint2(1) yint2];
plot(xint1, yint1, 'r', 'LineWidth', 2);
plot(xint2, yint2, 'g', 'LineWidth', 2);
xstart = xint1(1);
ystart = yint1(1);
xend = xint2(1);
yend = yint2(1);
while length(xint1) > 1 && length(xint2) > 1
d = sqrt((xint1 - xend).^2 + (yint1 - yend).^2);
[mind, ind] = min(d);
xnext = xint1(ind);
ynext = yint1(ind);
plot([xend xnext], [yend ynext], 'r', 'LineWidth', 2);
if ~inpolygon(mean([xend xnext]), mean([yend ynext]), xpoly, ypoly) && ~inpolygon(mean([xend xnext]), mean([yend ynext]), xcir, ycir)
xend = xnext;
yend = ynext;
xint1(ind) = [];
yint1(ind) = [];
else
d = sqrt((xint2 - xend).^2 + (yint2 - yend).^2);
[mind, ind] = min(d);
xnext = xint2(ind);
ynext = yint2(ind);
plot([xend xnext], [yend ynext], 'g', 'LineWidth', 2);
if ~inpolygon(mean([xend xnext]), mean([yend ynext]), xpoly, ypoly) && ~inpolygon(mean([xend xnext]), mean([yend ynext]), xcir, ycir)
xend = xnext;
yend = ynext;
xint2(ind) = [];
yint2(ind) = [];
else
break;
end
end
end
```
完整的Matlab代码如下:
```
% Define the polygon
xpoly = [-2 -2 2 2];
ypoly = [0 2 2 0];
% Define the circle
theta = linspace(0, 2*pi, 100);
xcir = 0.5*cos(theta);
ycir = 0.5*sin(theta);
% Define the parallel lines
nlines = 10;
d = linspace(-2, 2, nlines);
xline1 = linspace(-10, 10, 100);
xline2 = linspace(-10, 10, 100);
yline1 = zeros(size(xline1));
yline2 = zeros(size(xline2));
for i = 1:nlines
yline1 = yline1 + d(i);
yline2 = yline2 + d(i) + 0.5;
plot([xline1(1) xline1(end)], [yline1(1) yline1(end)], 'k--');
plot([xline2(1) xline2(end)], [yline2(1) yline2(end)], 'k--');
end
% Find intersection points
npoints = 0;
xint = [];
yint = [];
for i = 1:nlines
[xint1, yint1] = polyxpoly(xline1, yline1, xpoly, ypoly);
[xint2, yint2] = polyxpoly(xline2, yline2, xpoly, ypoly);
[xcirint, ycirint] = polyxpoly(xline1, yline1, xcir, ycir);
xint = [xint xint1 xint2 xcirint];
yint = [yint yint1 yint2 ycirint];
npoints = npoints + length(xint1) + length(xint2) + length(xcirint);
yline1 = yline1 + 0.5;
yline2 = yline2 + 0.5;
end
% Connect intersection points
hold on;
plot(xpoly, ypoly, 'k', 'LineWidth', 2);
plot(xcir, ycir, 'k', 'LineWidth', 2);
xint1 = xint(1:npoints/2);
yint1 = yint(1:npoints/2);
xint2 = xint(npoints/2+1:end);
yint2 = yint(npoints/2+1:end);
xint1 = xint1(end:-1:1);
yint1 = yint1(end:-1:1);
xint2 = xint2(end:-1:1);
yint2 = yint2(end:-1:1);
xint1 = [xint1(1) xint1];
yint1 = [yint1(1) yint1];
xint2 = [xint2(1) xint2];
yint2 = [yint2(1) yint2];
plot(xint1, yint1, 'r', 'LineWidth', 2);
plot(xint2, yint2, 'g', 'LineWidth', 2);
xstart = xint1(1);
ystart = yint1(1);
xend = xint2(1);
yend = yint2(1);
while length(xint1) > 1 && length(xint2) > 1
d = sqrt((xint1 - xend).^2 + (yint1 - yend).^2);
[mind, ind] = min(d);
xnext = xint1(ind);
ynext = yint1(ind);
plot([xend xnext], [yend ynext], 'r', 'LineWidth', 2);
if ~inpolygon(mean([xend xnext]), mean([yend ynext]), xpoly, ypoly) && ~inpolygon(mean([xend xnext]), mean([yend ynext]), xcir, ycir)
xend = xnext;
yend = ynext;
xint1(ind) = [];
yint1(ind) = [];
else
d = sqrt((xint2 - xend).^2 + (yint2 - yend).^2);
[mind, ind] = min(d);
xnext = xint2(ind);
ynext = yint2(ind);
plot([xend xnext], [yend ynext], 'g', 'LineWidth', 2);
if ~inpolygon(mean([xend xnext]), mean([yend ynext]), xpoly, ypoly) && ~inpolygon(mean([xend xnext]), mean([yend ynext]), xcir, ycir)
xend = xnext;
yend = ynext;
xint2(ind) = [];
yint2(ind) = [];
else
break;
end
end
end
```
阅读全文