Python中如何将影像高程平面由800个×800个格网构 成,每个格网大小为0.3m×0.3m;对高程平面 进行规则格网划分,窗口大小分别选取3个×3个 格网
时间: 2024-05-09 21:19:16 浏览: 100
Python-mesh-from-heightmap-generation:此脚本从高度图生成.OBJ网格,并在其上放置纹理(可选)。 用python 2.7制成
可以使用Python中的numpy库来实现影像高程平面的构建和规则格网划分。
首先,创建一个800x800的高程平面数组:
```python
import numpy as np
# 创建一个800x800的高程平面数组
elevation = np.zeros((800, 800))
```
然后,可以使用随机数生成一些高程值填充到数组中,以模拟真实的高程数据:
```python
# 生成随机高程值填充到数组中
for i in range(800):
for j in range(800):
elevation[i][j] = np.random.randint(0, 1000)
```
接下来,可以使用numpy的切片操作将高程平面划分成3x3的窗口:
```python
# 将高程平面划分成3x3的窗口
window_size = 3 # 窗口大小为3x3
window_shape = (window_size, window_size)
windows = np.lib.stride_tricks.sliding_window_view(elevation, window_shape)
```
最后,可以对每个窗口进行计算,例如计算窗口内的平均高程值:
```python
# 对每个窗口进行计算
for i in range(800 - window_size + 1):
for j in range(800 - window_size + 1):
window = windows[i:i+window_size, j:j+window_size]
average_elevation = np.mean(window)
# do something with the average elevation value
```
完整代码如下:
```python
import numpy as np
# 创建一个800x800的高程平面数组
elevation = np.zeros((800, 800))
# 生成随机高程值填充到数组中
for i in range(800):
for j in range(800):
elevation[i][j] = np.random.randint(0, 1000)
# 将高程平面划分成3x3的窗口
window_size = 3 # 窗口大小为3x3
window_shape = (window_size, window_size)
windows = np.lib.stride_tricks.sliding_window_view(elevation, window_shape)
# 对每个窗口进行计算
for i in range(800 - window_size + 1):
for j in range(800 - window_size + 1):
window = windows[i:i+window_size, j:j+window_size]
average_elevation = np.mean(window)
# do something with the average elevation value
```
注意,以上代码仅仅是一个示例,实际应用中可能需要根据具体需求进行修改。例如,可以使用其他窗口大小,或者使用其他函数来计算窗口内的值。
阅读全文