% 指定特征提取层 featureLayer = 'res3a_relu'; % 创建 YOLO v2 对象检测网络 lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,baseNetwork,featureLayer); % analyzeNetwork(lgraph); % 查看搭建的YOLO网络结构 if comparisonMode == 2 myLr = [0.1 0.05 0.001 0.0005]; for k = myLr if doTraining % 训练参数 adam rmsprop options = trainingOptions('sgdm', ... 'MiniBatchSize', 50, .... 'InitialLearnRate', k, ... 'MaxEpochs', 100,... 'ExecutionEnvironment','cpu',... 'Shuffle', 'every-epoch'); % 训练检测器 [detector, info] = trainYOLOv2ObjectDetector(trainImg, lgraph, options); save(['模型New/model_lr_' num2str(k) '.mat'], 'detector', 'info') else % 导入已训练模型 modelName = ''; load(modelName); end end end给我详细解释,要一句一句的解释这段代码
时间: 2024-02-14 20:35:43 浏览: 125
这段代码主要是用于训练一个基于YOLO v2的目标检测器。首先,通过指定特征提取层和其他参数,创建了一个YOLO v2对象检测网络。然后,根据比较模式的不同(comparisonMode),选择不同的学习率(myLr)进行训练。如果选择了训练(doTraining),则设置了训练参数(options),包括使用SGDM优化器、每次训练使用50个样本、初始学习率、最大训练轮数等。接着,调用trainYOLOv2ObjectDetector函数,开始训练检测器,并将训练得到的检测器和相关信息保存。如果选择了不训练,则导入已训练好的模型。最后,将每个学习率对应的模型保存在不同的文件中。
阅读全文