下面给出一段详细代码:class CrnModel: def init(self, feature_num): self.feature_num = feature_num self.input_magnitude = layers.Input(shape=[128, feature_num], name='input_magnitude') model_output = self.structure_model() self.model = tf.keras.Model(inputs=self.input_magnitude, outputs=model_output) self.model.summary() def structure_model(self): layer_input = self.input_magnitude layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=1, kernel_size=3, activation='relu')( layer_input) layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=2, kernel_size=3, activation='relu')( layer_output) layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=4, kernel_size=3, activation='relu')( layer_output) layer_output = layers.Conv1D(filters=64, kernel_size=1, activation='linear')(layer_output) layer_output = layers.Conv1D(filters=257, kernel_size=1, activation='relu')(layer_output) return layer_output。请你给出详细解释和注释
时间: 2023-12-03 20:45:42 浏览: 136
这是一个使用 TensorFlow 实现的 CRN(Causal Residual Network)模型,用于音频信号处理。下面是对代码的详细注释:
```
class CrnModel:
def __init__(self, feature_num):
self.feature_num = feature_num # 初始化类的特征数
self.input_magnitude = layers.Input(shape=[128, feature_num], name='input_magnitude') # 定义输入层,输入维度为 [128, feature_num]
model_output = self.structure_model() # 定义模型输出
self.model = tf.keras.Model(inputs=self.input_magnitude, outputs=model_output) # 定义完整模型
self.model.summary() # 打印模型概述
def structure_model(self):
layer_input = self.input_magnitude # 定义输入层
layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=1, kernel_size=3, activation='relu')(layer_input) # 第一层卷积层
layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=2, kernel_size=3, activation='relu')(layer_output) # 第二层卷积层
layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=4, kernel_size=3, activation='relu')(layer_output) # 第三层卷积层
layer_output = layers.Conv1D(filters=64, kernel_size=1, activation='linear')(layer_output) # 用 1x1 卷积层降维
layer_output = layers.Conv1D(filters=257, kernel_size=1, activation='relu')(layer_output) # 最终输出层,输出维度为 257
return layer_output # 返回最终输出层
```
该模型使用了四个卷积层,其中 dilation_rate 表示膨胀率,padding 表示填充方式,kernel_size 表示卷积核大小,filters 表示卷积核数量,activation 表示激活函数。模型输入维度为 [128, feature_num],输出维度为 [128, 257],其中 257 表示频域的维度。最后使用 Keras 的 Model 类定义完整模型,并打印模型概述。
阅读全文