下面这段代码的作用是什么class CasSeqGCNTrainer(object): def __init__(self, args): self.args = args self.setup_model() def enumerate_unique_labels_and_targets(self): """ Enumerating the features and targets. """ print("\nEnumerating feature and target values.\n") #枚举数据集 ending = "*.json" self.graph_paths = sorted(glob.glob(self.args.graph_folder + ending), key = os.path.getmtime)#获取self.args.graph_folder目录下所有的json文件 features = set() data_dict = dict() for path in tqdm(self.graph_paths):#加载所有的json文件,将数据存储在上面的features和data_dict中 data = json.load(open(path)) data_dict = data for i in range(0, len(data) - self.args.sub_size): graph_num = 'graph_' + str(i) features = features.union(set(data[graph_num]['labels'].values())) self.number_of_nodes = self.args.number_of_nodes self.feature_map = utils.create_numeric_mapping(features) #依赖的其他文件提供的能力,看上去是将数据集根据特性进行整理 self.number_of_features = len(self.feature_map)#将特性的map的长度赋值给特性数量
时间: 2023-06-24 20:06:28 浏览: 108
详解Python中的__new__、__init__、__call__三个特殊方法
这段代码定义了一个名为 CasSeqGCNTrainer 的类,它包含了初始化函数 __init__(self, args) 和一个枚举数据集的函数 enumerate_unique_labels_and_targets(self)。其中,初始化函数接收一个参数 args,表示训练器的一些配置参数;setup_model() 方法用于构建模型。而枚举数据集的函数则用于加载数据集,将数据存储在 data_dict 中,并枚举所有数据中出现的特征(features)和目标(targets)。最终,该类还定义了两个实例变量:number_of_nodes 表示节点数量,feature_map 是一个字典,用于将特征映射到数字编号。
阅读全文