VAE损失函数编写代码,pytorch
时间: 2024-11-04 19:08:34 浏览: 59
在PyTorch中,Variational Autoencoder (VAE) 的损失函数通常包括两部分:重构误差(reconstruction loss)和潜在变量分布的Kullback-Leibler散度(KL divergence)。下面是一个简单的VANELoss类的示例代码:
```python
import torch
from torch.distributions import Normal
class VAELoss(torch.nn.Module):
def __init__(self, recon_loss_function=torch.nn.MSELoss(), kl_div_weight=1.0):
super(VAELoss, self).__init__()
self.recon_loss = recon_loss_function
self.kl_div_weight = kl_div_weight
self.normal = Normal(loc=torch.zeros(1), scale=torch.ones(1))
def forward(self, x, mu, logvar):
# Reconstruction Loss
reconstruction_error = self.recon_loss(x, mu)
# KL Divergence between Prior and Posterior Distribution
kl_div = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
# Combine losses with weights
vaeloss = reconstruction_error + self.kl_div_weight * kl_div
return vaeloss, reconstruction_error, kl_div
```
在这个例子中,`x` 是输入数据,`mu` 和 `logvar` 分别是编码后的均值和方差。`recon_loss_function` 可以为MSELoss或其他合适的损失函数。`kl_div_weight` 设置了KL散度的权重,你可以根据需求调整这个值。
阅读全文