编写一个VAE pytorch
时间: 2024-10-19 09:16:39 浏览: 17
生成对抗网络(VAE,Variational Autoencoder)是一种深度学习模型,用于无监督的数据生成和潜在表示学习。在PyTorch中编写VAE,你需要准备一些基本组件,如编码器、解码器以及损失函数等。
以下是简单步骤和示例代码:
```python
import torch
from torch import nn
from torch.nn import functional as F
class Encoder(nn.Module):
def __init__(self, input_dim, latent_dim):
super(Encoder, self).__init__()
# 你可以添加更多的层,这里是一个简单的线性层
self.fc1 = nn.Linear(input_dim, 400)
self.fc21 = nn.Linear(400, latent_dim) # mu
self.fc22 = nn.Linear(400, latent_dim) # log(variance)
def forward(self, x):
h = F.relu(self.fc1(x))
z_mu = self.fc21(h)
z_log_var = self.fc22(h)
return z_mu, z_log_var
class Decoder(nn.Module):
def __init__(self, latent_dim, output_dim):
super(Decoder, self).__init__()
self.fc3 = nn.Linear(latent_dim, 400)
self.fc4 = nn.Linear(400, output_dim)
def forward(self, z):
h = F.relu(self.fc3(z))
x_recon = self.fc4(h)
return x_recon
class VAE(nn.Module):
def __init__(self, input_dim, latent_dim):
super(VAE, self).__init__()
self.encoder = Encoder(input_dim, latent_dim)
self.decoder = Decoder(latent_dim, input_dim)
def reparameterize(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
mu, log_var = self.encoder(x)
z = self.reparameterize(mu, log_var)
x_recon = self.decoder(z)
reconstruction_loss = F.mse_loss(x_recon, x, reduction='sum')
kl_divergence = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
return reconstruction_loss, kl_divergence, x_recon
# 使用示例
vae = VAE(input_dim=784, latent_dim=20) # 假设输入数据是28x28灰度图片
x = torch.randn(100, 784)
reconstruction_loss, kl_div, recon_x = vae(x)
```
阅读全文