编写一个VAE pytorch版本
时间: 2024-10-19 08:04:42 浏览: 36
在PyTorch中实现Variational Autoencoder (VAE)是一个常见的深度学习任务,它是一种生成模型,用于学习数据的潜在分布并能够从这个分布中生成新的样本。以下是基本步骤:
```python
# 导入必要的库
import torch
import torch.nn as nn
from torch.autograd import Variable
# 定义Encoder部分,这里包含一个输入层、隐藏层以及Q(z|x)网络(即编码器)
class Encoder(nn.Module):
def __init__(self, input_dim, hid_dim, z_dim):
super(Encoder, self).__init__()
self.fc1 = nn.Linear(input_dim, hid_dim)
self.fc21 = nn.Linear(hid_dim, z_dim)
self.fc22 = nn.Linear(hid_dim, z_dim)
def forward(self, x):
h1 = torch.relu(self.fc1(x))
mean = self.fc21(h1)
log_var = self.fc22(h1)
return mean, log_var
# 定义Decoder部分,它接收z作为输入,并通过一系列线性和激活函数解码回原始空间
class Decoder(nn.Module):
def __init__(self, z_dim, hid_dim, output_dim):
super(Decoder, self).__init__()
self.fc3 = nn.Linear(z_dim, hid_dim)
self.fc4 = nn.Linear(hid_dim, hid_dim)
self.fc5 = nn.Linear(hid_dim, output_dim)
def forward(self, z):
h2 = torch.relu(self.fc3(z))
h3 = torch.relu(self.fc4(h2))
out = torch.sigmoid(self.fc5(h3)) # 对于二进制数据,可以使用sigmoid;对于连续数据,可以使用tanh
return out
# 创建完整的VAE类
class VAE(nn.Module):
def __init__(self, encoder, decoder, z_dim):
super(VAE, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.reparameterize = nn.ModuleList([nn.Linear(z_dim, z_dim), nn.Sigmoid()]) # 添加随机重参数化操作
def reparametrize_(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
mean, log_var = self.encoder(x)
z = self.reparametrize_(mean, log_var)
recon_x = self.decoder(z)
return recon_x, mean, log_var
# 使用例子
input_dim = ... # 输入数据维度
hid_dim = ... # 隐藏层维度
z_dim = ... # 随机变量维度
model = VAE(Encoder(input_dim, hid_dim, z_dim), Decoder(z_dim, hid_dim, input_dim))
```
阅读全文