利用newton迭代法求解三参数威布尔分布的极大似然估计值,python代码
时间: 2024-12-19 14:26:41 浏览: 2
fit_matlab_最大似然数法;估计参数;拟合_
5星 · 资源好评率100%
利用牛顿迭代法求解三参数威布尔分布(Weibull distribution)的极大似然估计值,通常需要以下几个步骤:
首先,我们需要威布尔分布的概率密度函数 (PDF) 和其对数概率密度函数 (log PDF),因为牛顿法优化的是目标函数的负梯度。
```python
import numpy as np
def weibull_pdf(x, alpha, beta, loc=0):
return (alpha * beta**alpha) / x**(alpha + 1) * np.exp(-(beta / x)**alpha)
def weibull_logpdf(x, alpha, beta, loc=0):
return -np.log(alpha * beta**alpha) - (alpha + 1) * np.log(x) + (alpha * np.log(beta) + alpha * np.log(x))
# 假设我们有一个数据集 data
data = ...
# 初始化猜测值,一般选择数据的平均值作为初始点
initial_params = [np.mean(data), np.std(data), data.min()]
def newton_raphson_iterate(params, data, tolerance=1e-6, max_iterations=100):
# 牛顿迭代的核心函数
def gradient(params):
alpha, beta, loc = params
gradient_alpha = sum(-weibull_logpdf(x, alpha, beta, loc) for x in data)
gradient_beta = sum(-((alpha + 1) * np.log(x) - alpha * np.log(beta)) for x in data)
gradient_loc = sum(-np.log(x - loc) for x in data if x > loc) # 去除小于loc的数据
return gradient_alpha, gradient_beta, gradient_loc
def hessian(params):
alpha, beta, loc = params
hessian_alpha = -sum(weibull_logpdf(x, alpha, beta, loc)**2 for x in data)
hessian_beta = -sum(((alpha + 1) * np.log(x) - alpha * np.log(beta))**2 for x in data)
hessian_loc = -sum(np.heaviside(loc - x, 0) * (-1 / (x - loc)**2) for x in data if x > loc) # 去除小于loc的数据
return hessian_alpha, hessian_beta, hessian_loc
params_history = []
current_params = params.copy()
for _ in range(max_iterations):
gradient_val = gradient(current_params)
hessian_val = hessian(current_params)
step = np.linalg.solve(hessian_val, -gradient_val)
next_params = current_params + step
params_history.append(next_params)
if abs(sum((current_params - next_params)**2)) < tolerance:
break
else:
current_params = next_params
return next_params, params_history
estimated_params, convergence_curve = newton_raphson_iterate(initial_params, data)
```
阅读全文