解释这段代码每行的意思:for i in range(0, len(x_valid)): N = 1024 fs = 12000 t = np.linspace(0, 1024 / fs, N, endpoint=False) wavename = 'cmor3-3' totalscal = 256 fc = pywt.central_frequency(wavename)#中心频率 cparam = 2 * fc * totalscal scales = cparam / np.arange(totalscal, 1, -1) [cwtmatr, frequencies] = pywt.cwt(x_valid[i], scales, wavename, 1.0 / fs) plt.contourf(t, frequencies, abs(cwtmatr)) plt.axis('off') plt.gcf().set_size_inches(1024 / 100, 1024 / 100) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) x = r'./cwt_picture/valid/' + str(i) + '-' + str(y_valid[i]) + '.jpg' plt.savefig(x) plt.clf() plt.close()
时间: 2023-06-07 21:07:58 浏览: 163
这段代码的含义是:对于x_valid的长度,从0遍历到其长度-1,每次循环执行以下操作:设定N为1024,fs为12000,用np.linspace生成长度为N的时间向量t,wavename为'cmor3-3',totalscal设定为256,fc为通过pywt库计算得到的'cmor3-3'小波的中心频率。
相关问题
import socket import numpy as np import scipy.signal as signal from scipy.fftpack import fft,ifft from scipy.stats import pearsonr import matplotlib.pyplot as pltdef is_valid(corr_arr): for i in range(0, 25): if corr_arr[i] < 0.8: return False return True if __name__ == '__main__':udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # 2.绑定本地的相关信息,如果一个网络程序不绑定,则系统会随机分配 dest_addr = ('192.168.4.2', 4444) # ip地址 和端口号,ip一般不用写,表示本机的任何一个ip udp_socket.bind(dest_addr) # 必须绑定自己的IP N = 32768 # 采样点数 fs = 48000 # 采样频率 n = np.arange(N) # 用于产生离散时间序列 f = n * fs / N # 生成频率序列,为后续作图做准备#将标准的chirp数据取出来作为标准 file_object = open('chirp2218.txt') try: chirp_data_str = file_object.read() chirp_data_spl = chirp_data_str.split(',') n = len(chirp_data_spl) chirp_data = np.zeros(4800, dtype=np.int16) for i in range(0, 4800): chirp_data[i] = int(chirp_data_spl[i]) finally: file_object.close() while True: recv_data = udp_socket.recvfrom(19200) n = len(recv_data[0])voice_data = recv_data[0]voice_data_del = np.zeros(9600, dtype=np.int16)
这段代码主要是一个Python程序,首先导入了一些Python的库,包括socket、numpy、scipy.signal、scipy.fftpack、scipy.stats和matplotlib.pyplot。这些库提供了一些常用的函数和工具,例如用于网络通信的socket库、用于科学计算的numpy和scipy库、用于绘图的matplotlib库等。
is_valid函数用于判断相关系数数组中的值是否满足一定的条件。具体来说,它会判断数组中第一个值是否大于0.8,如果大于则继续判断数组中后面的25个值是否都大于0.8,如果都大于则返回True,否则返回False。
在main函数中,代码首先创建了一个UDP套接字并绑定了本地的IP地址和端口号。然后定义了一些常量,包括采样点数N、采样频率fs、离散时间序列n和频率序列f。这些常量为后续的信号处理和绘图做准备。
接下来,代码从文件中读取了标准的chirp数据并将其转换为numpy数组。然后,代码进入一个无限循环,不断接收UDP数据并对其进行处理。具体来说,代码首先从接收到的数据中取出音频数据,并将其转换为numpy数组。然后,代码对音频数据进行一些处理并进行相关性分析,最后根据相关性分析的结果进行判断并输出结果。
解释 import pywt import matplotlib.pyplot as plt import numpy as np import preprocess path = r'F:\biyesheji\4\hebingmat' x_train, y_train, x_valid, y_valid, x_test, y_test = preprocess.prepro( d_path=path, length=784, number=30, normal=True, rate=[0.6, 0.2, 0.2], enc=False, enc_step=28) for i in range(0, len(x_valid)): N = 784 fs = 12000 t = np.linspace(0, 784 / fs, N, endpoint=False) wavename = 'cmor3-3' totalscal = 256 fc = pywt.central_frequency(wavename) cparam = 2 * fc * totalscal scales = cparam / np.arange(totalscal, 1, -1) [cwtmatr, frequencies] = pywt.cwt(x_valid[i], scales, wavename, 1.0 / fs) plt.contourf(t, frequencies, abs(cwtmatr)) plt.axis('off') plt.gcf().set_size_inches(784 / 100, 784 / 100) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) x = r'./cwt_picture/valid/' + str(i) + '-' + str(y_valid[i]) + '.jpg' plt.savefig(x)
这段代码主要是进行连续小波变换(CWT)并可视化结果。首先,使用 `pywt` 库导入所需的函数和模块。然后,使用 `preprocess` 库中的 `prepro` 函数加载数据集并进行预处理。接下来,使用 `for` 循环遍历验证集中的每个样本,对每个样本进行 CWT 变换。在变换过程中,设置了信号长度、采样频率、小波名称、总比例尺数、中心频率和尺度等参数。最后,使用 `matplotlib.pyplot` 库将结果可视化并保存为图片。其中 `plt.contourf` 函数用于绘制等高线图,`plt.axis` 函数用于设置坐标轴,`plt.gcf` 函数用于获取当前的 `figure` 对象,`plt.gca` 函数用于获取当前的 `axes` 对象,`plt.subplots_adjust` 函数用于调整子图的布局,`plt.margins` 函数用于设置边缘大小。最后,将图片保存到指定的文件夹中。
阅读全文