stack expects each tensor to be equal size, but got [1, 3, 64] at entry 0 and [1, 3, 142] at entry 1
时间: 2024-02-10 22:00:46 浏览: 162
This error message indicates that there are two tensors being stacked together using the `torch.stack()` function, but they have different sizes along one of their dimensions. Specifically, the tensors have shapes `[1, 3, 64]` and `[1, 3, 142]`.
To fix this error, you need to ensure that the tensors being stacked have the same size along the dimension you want to stack them along. You can either reshape the tensors to have the same size or pad the smaller tensor with zeros to match the larger tensor's size. Once the tensors have the same size, you can stack them using `torch.stack()`.
相关问题
这个函数RuntimeError: stack expects each tensor to be equal size, but got [1, 17] at entry 0 and [1, 11] at entry遇到RuntimeError: stack expects each tensor to be equal size, but got [1, 17] at entry 0 and [1, 11] at entry这个问题怎么解决
这个错误通常发生在使用PyTorch的torch.stack函数时,输入的张量(tensor)尺寸不一致导致的。
解决方法是将所有输入张量(tensor)的尺寸(shape)改为相同大小,可以通过padding或者截断的方式实现。具体来说,可以通过下面两种方式解决这个问题:
1. Padding方式
在将数据喂给torch.stack之前,将所有的张量(tensor)填充到相同的尺寸。可以使用PyTorch中的torch.nn.functional.pad函数实现。具体代码如下:
```python
import torch
# 将所有张量填充到相同尺寸
max_shape = torch.Size([1, 17]) # 假设最大尺寸为 [1, 17]
padded_tensors = []
for tensor in tensor_list:
pad = torch.nn.functional.pad(tensor, [0, max_shape[1] - tensor.shape[1], 0, max_shape[0] - tensor.shape[0]])
padded_tensors.append(pad)
# 将所有张量堆叠起来
stacked_tensor = torch.stack(padded_tensors, dim=0)
```
其中,tensor_list是一个列表,包含了所有的张量(tensor),每个张量的尺寸可以不同。
2. 截断方式
如果不想使用padding方式,也可以将所有张量(tensor)截断到相同的尺寸。具体代码如下:
```python
import torch
# 将所有张量截断到相同尺寸
max_shape = torch.Size([1, 11]) # 假设最大尺寸为 [1, 11]
truncated_tensors = []
for tensor in tensor_list:
truncated = tensor[:, :max_shape[1]]
truncated_tensors.append(truncated)
# 将所有张量堆叠起来
stacked_tensor = torch.stack(truncated_tensors, dim=0)
```
其中,max_shape是所有张量中的最大尺寸,truncated_tensors是截断后的张量列表。
RuntimeError: stack expects each tensor to be equal size, but got [96, 3] at entry 0 and [64, 3] at entry 17
这个错误通常发生在使用堆栈函数(如torch.stack)时,由于输入张量的大小不同而导致无法堆叠。在您的情况下,输入张量的大小分别为[96, 3]和[64, 3],它们的第二维不同,因此无法堆叠。
您需要确保所有输入张量的形状都相同,或者根据您的需求调整它们的形状,以使它们具有相同的大小。您可以使用函数如torch.reshape或torch.unsqueeze来改变张量的形状。
阅读全文