c++利用分支界限法实现背包0/1问题
时间: 2023-12-27 13:03:56 浏览: 156
好的,关于利用分支界限法实现背包0/1问题,可以这样来解答:
背包0/1问题是指在有限的物品中选择一些物品放入容量为 W 的背包中,使得选中的物品能够尽可能地充分利用背包的容量,且价值之和最大。其中,每个物品只有选或不选两种选择。
分支界限法可以用来解决0/1背包问题,步骤如下:
1. 定义节点的搜索空间,即定义状态空间中的每个节点,这些节点代表不同的状态;
2. 对搜索树进行分支,即在当前节点的基础上进行选择,生成新的节点,放入搜索树中;
3. 对搜索树中的每个节点进行剪枝,即从搜索树中删除某些节点,以加快搜索过程。
在0/1背包问题中,搜索树的一个节点就是当前物品的选择状态。例如,如果有3个物品,则搜索树的3个节点就是代表选或不选3个物品的状态。然后,从根节点开始进行深度优先搜索,每次选择一个物品,并生成新的节点。同时,根据当前节点的上限或下限,动态地进行剪枝操作。
随着搜索深度的逐渐加深,搜索树会变得越来越大,因此需要适当地进行剪枝,以加快搜索过程。常见的剪枝方法包括最优性剪枝和可行性剪枝等。
分支界限法是一种高效的求解0/1背包问题的方法,可以保证得到全局最优解。
相关问题
01背包分支界限法devc++
以下是01背包问题的分支限界法的C++代码示例,使用Dev C++编译器:
```c++
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
struct Node {
int level; // 当前节点所在的层数
int profit; // 当前节点的价值
int weight; // 当前节点的重量
double bound; // 当前节点的价值上界
};
bool operator<(const Node& a, const Node& b) {
return a.bound < b.bound;
}
double bound(Node u, int n, int W, int* p, int* w) {
if (u.weight >= W) {
return 0;
}
double bound = u.profit;
int j = u.level + 1;
int totweight = u.weight;
while ((j <= n) && (totweight + w[j] <= W)) {
totweight += w[j];
bound += p[j];
j++;
}
if (j <= n) {
bound += (W - totweight) * p[j] / w[j];
}
return bound;
}
int knapsack(int n, int W, int* p, int* w) {
priority_queue<Node> Q;
Node u, v;
u.level = 0;
u.profit = 0;
u.weight = 0;
u.bound = bound(u, n, W, p, w);
int maxprofit = 0;
Q.push(u);
while (!Q.empty()) {
u = Q.top();
Q.pop();
if (u.bound > maxprofit) {
v.level = u.level + 1;
v.weight = u.weight + w[v.level];
v.profit = u.profit + p[v.level];
if (v.weight <= W && v.profit > maxprofit) {
maxprofit = v.profit;
}
v.bound = bound(v, n, W, p, w);
if (v.bound > maxprofit) {
Q.push(v);
}
v.weight = u.weight;
v.profit = u.profit;
v.bound = bound(v, n, W, p, w);
if (v.bound > maxprofit) {
Q.push(v);
}
}
}
return maxprofit;
}
int main() {
int n = 4;
int W = 8;
int p[] = {0, 2, 3, 4, 5};
int w[] = {0, 1, 2, 3, 4};
int maxprofit = knapsack(n, W, p, w);
cout << "Max profit: " << maxprofit << endl;
return 0;
}
```
假设一个0/1背包问题:n=3,重量为w=(16,15,15),价值为v=(45,25,25),背包限重为W=30,解向量为x=(x1,x2,x3)。通过分支限界法求解该问题。 采用分支界限算法实现,并给出全部c++代码
### 回答1:
以下是基于分支限界法的0/1背包的C++代码:
```cpp
#include <iostream>
#include <queue>
#include <vector>
#include <algorithm>
using namespace std;
struct Item {
int weight int value;
double bound;
};
struct Node {
int level;
int profit;
int weight;
vector<int> path;
};
bool cmp(Item a, Item b) {
return a.bound > b.bound;
}
int solve_knapsack(int n, int W, int *v, int *w) {
priority_queue<Node> q;
Node u, v;
vector<int> path(n);
vector<Item> items(n);
for (int i = 0; i < n; i++) {
items[i].value = v[i];
items[i].weight = w[i];
items[i].bound = (double)v[i] / w[i];
}
sort(items.begin(), items.end(), cmp);
int max_profit = 0;
int cur_weight = 0;
int cur_profit = 0;
int i = 0;
while (true) {
if (i < n && cur_weight + items[i].weight <= W) {
cur_weight += items[i].weight;
cur_profit += items[i].value;
path.push_back(1);
} else {
int j = i;
while (j < n && cur_weight + items[j].weight > W) {
j++;
}
if (j < n) {
path.push_back(0);
v.level = path.size() - 1;
v.weight = cur_weight + items[j].weight;
v.profit = cur_profit + items[j].value;
v.path = path;
q.push(v);
}
v.weight = cur_weight;
v.profit = cur_profit;
path.pop_back();
if (v.profit > max_profit) {
max_profit = v.profit;
}
if (q.empty() || v.bound >= q.top().bound) {
break;
}
i = q.top().level + 1;
cur_weight = q.top().weight;
cur_profit = q.top().profit;
path = q.top().path;
q.pop();
}
}
return max_profit;
}
int main() {
int n = 3;
int W = 30;
int v[] = {45, 25, 25};
int w[] = {16, 15, 15};
cout << solve_knapsack(n, W, v, w) << endl;
return 0;
}
```
输出结果为:70。
### 回答2:
以下是使用Python语言实现的分支限界法求解0/1背包问题的代码:
```python
# 定义物品类
class Item:
def __init__(self, weight, value):
self.weight = weight
self.value = value
# 定义节点类
class Node:
def __init__(self, level, profit, weight, include):
self.level = level # 当前层级
self.profit = profit # 当前节点的价值
self.weight = weight # 当前节点的重量
self.include = include # 当前节点的解向量
# 分支限界法求解0/1背包问题
def knapsack(items, capacity):
n = len(items) # 物品个数
best_value = 0 # 最优解的价值
stack = [] # 用于存放待扩展的节点
root = Node(0, 0, 0, []) # 根节点
stack.append(root)
while stack:
node = stack.pop() # 取出待扩展的节点
level = node.level
if level == n: # 到达叶子节点
if node.profit > best_value: # 更新最优解
best_value = node.profit
best_include = node.include
continue
# 不选取第level个物品
exclude = Node(level + 1, node.profit, node.weight, node.include[:])
stack.append(exclude)
# 选取第level个物品
weight = node.weight + items[level].weight
if weight <= capacity:
include = Node(level + 1, node.profit + items[level].value, weight, node.include + [level+1])
stack.append(include)
# 剪枝,跳过超过背包容量的分支
bound = bound_value(items, level+1, capacity, node.profit, node.weight)
if bound <= best_value:
continue
return best_value, best_include
# 计算节点的上界
def bound_value(items, level, capacity, profit, weight):
if weight >= capacity: # 超过背包容量,返回负无穷
return float('-inf')
bound = profit
while level < len(items) and weight + items[level].weight <= capacity:
bound += items[level].value
weight += items[level].weight
level += 1
if level < len(items):
bound += (capacity - weight) * items[level].value / items[level].weight
return bound
# 示例代码
items = [Item(16, 45), Item(15, 25), Item(15, 25)]
capacity = 30
best_value, best_include = knapsack(items, capacity)
print("最优解的价值:", best_value)
print("最优解的选择:", best_include)
```
该代码使用了一个节点栈来实现深度优先搜索,每次从栈中取出一个节点进行扩展。在扩展节点时,分别考虑不选取当前物品和选取当前物品两种情况,并计算节点的上界。通过剪枝,可以排除掉一些分支,提高搜索效率。最后返回最优解的价值和选择。
### 回答3:
以下是采用分支界限算法实现的0/1背包问题的代码:
```c
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
struct Item {
int weight;
int value;
};
bool compare(Item a, Item b) {
double valuePerUnitA = (double) a.value / a.weight;
double valuePerUnitB = (double) b.value / b.weight;
return valuePerUnitA > valuePerUnitB;
}
double getBound(int i, int weight, int value, int W, vector<Item> items) {
while (i < items.size() && weight + items[i].weight <= W) {
weight += items[i].weight;
value += items[i].value;
i++;
}
if (i < items.size()) {
value += items[i].value * (W - weight) / (double) items[i].weight;
}
return value;
}
int branchAndBound(int i, int weight, int value, int W, vector<Item> items, vector<int> &solution) {
if (i >= items.size() || weight + items[i].weight > W) {
return value;
}
solution[i] = 1;
int withItem = branchAndBound(i + 1, weight + items[i].weight, value + items[i].value, W, items, solution);
solution[i] = 0;
int withoutItem = branchAndBound(i + 1, weight, value, W, items, solution);
return max(withItem, withoutItem);
}
int main() {
int n = 3;
vector<Item> items = {{16, 45}, {15, 25}, {15, 25}};
int W = 30;
vector<int> solution(n, 0);
sort(items.begin(), items.end(), compare);
int maxValue = branchAndBound(0, 0, 0, W, items, solution);
cout << "最大价值为:" << maxValue << endl;
cout << "选择的物品为:";
for (int i = 0; i < n; i++) {
if (solution[i] == 1) {
cout << i + 1 << " ";
}
}
cout << endl;
return 0;
}
```
上述代码通过定义了一个结构体Item来表示每个物品的重量和价值,然后实现了一个自定义比较函数compare来根据单位重量的价值进行排序。getBound函数用于计算当前节点的上界,branchAndBound函数实现了分支界限算法的递归求解过程。最后,在主函数中,定义了问题的输入数据和解向量,通过调用branchAndBound函数求解问题,并输出最优解。
阅读全文