matlab 分解灰度图像emd代码
时间: 2023-08-01 19:07:17 浏览: 144
EMD代码_EMD_EMD代码_
5星 · 资源好评率100%
以下是用 MATLAB 实现的分解灰度图像 EMD(经验模态分解)的代码:
```matlab
function [imfs, residual] = emd_gray(im, maxiter)
% EMD_GRAY Empirical Mode Decomposition for gray-scale images
% [IMFS, RESIDUAL] = EMD_GRAY(IM, MAXITER) performs Empirical Mode
% Decomposition (EMD) on the input gray-scale image IM. The decomposition
% generates a set of Intrinsic Mode Functions (IMFs) and a residual image.
% The maximum number of iterations for EMD can be specified as MAXITER.
%
% Input arguments:
% ------------------
% IM: Input gray-scale image (2D matrix)
% MAXITER: Maximum number of iterations for EMD (default: 100)
%
% Output arguments:
% ------------------
% IMFS: Set of Intrinsic Mode Functions (IMFs) (3D matrix)
% RESIDUAL: Residual image (2D matrix)
% Set default value for MAXITER
if nargin < 2
maxiter = 100;
end
% Pre-allocate memory for IMFs and residual
imfs = zeros(size(im,1), size(im,2), maxiter);
residual = im;
% Perform EMD
for i = 1:maxiter
% Compute the first IMF
imf = imemd(residual);
% Save the first IMF
imfs(:,:,i) = imf;
% Subtract the first IMF from the original image
residual = residual - imf;
% Stop if the residual becomes too small
if sum(residual(:).^2) < eps
break;
end
end
% Remove unused entries from IMFs
imfs(:,:,i+1:end) = [];
end
function imf = imemd(im)
% IMEMD Intrinsic Mode Function (IMF) computation using EMD
% IMF = IMEMD(IM) computes the first Intrinsic Mode Function (IMF) of the
% input gray-scale image IM using Empirical Mode Decomposition (EMD).
%
% Input arguments:
% ------------------
% IM: Input gray-scale image (2D matrix)
%
% Output arguments:
% ------------------
% IMF: First Intrinsic Mode Function (IMF) (2D matrix)
% Set stopping criterion
eps = 1e-5;
% Initialize variables
imf = im;
h = imf;
% Perform EMD
while true
% Find upper and lower envelopes
u = h;
l = h;
for i = 1:10
% Find local maxima and minima
maxlocs = (diff(sign(diff(u))) < 0) + 1;
minlocs = (diff(sign(diff(l))) > 0) + 1;
% Interpolate to get upper and lower envelopes
if length(maxlocs) > 2
u = interp1(maxlocs, h(maxlocs), 1:length(h), 'spline');
end
if length(minlocs) > 2
l = interp1(minlocs, h(minlocs), 1:length(h), 'spline');
end
end
% Compute mean of upper and lower envelopes
m = (u + l) / 2;
% Extract IMF
imf = imf - m;
% Compute residue
r = imf - h;
% Check if residue is small enough
if sum(r(:).^2) < eps
break;
end
% Update variables for next iteration
h = m;
end
end
```
该代码将输入的灰度图像分解成一组内禀模态函数(IMFs)和一个残差图像。该算法使用经验模态分解(EMD)方法进行分解。由于 EMD 算法的非确定性性质,同一幅图像可能会得到不同的 IMFs。因此,使用不同的参数和初始条件可能会导致不同的结果。
阅读全文