用MATLAB写一段用训练集和测试集的dnn代码
时间: 2024-03-14 11:46:54 浏览: 157
好的,这是一个简单的用训练集和测试集的DNN代码示例,使用MATLAB的深度学习工具箱:
首先,加载数据集,并将其分成训练集和测试集:
```matlab
load('dataset.mat'); % 加载数据集
num_samples = size(dataset,1);
num_train = floor(0.8*num_samples); % 80%的数据作为训练集
indices = randperm(num_samples);
train_indices = indices(1:num_train);
test_indices = indices(num_train+1:end);
train_data = dataset(train_indices, 1:end-1);
train_labels = dataset(train_indices, end);
test_data = dataset(test_indices, 1:end-1);
test_labels = dataset(test_indices, end);
```
接下来,定义DNN的网络结构:
```matlab
layers = [
fullyConnectedLayer(50)
reluLayer
fullyConnectedLayer(25)
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer
];
```
这里定义了3个全连接层和2个激活函数层,最后是一个softmax分类层和一个分类层。
然后,定义训练选项和训练DNN:
```matlab
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
'MiniBatchSize', 32, ...
'Shuffle', 'every-epoch', ...
'Plots', 'training-progress');
net = trainNetwork(train_data', categorical(train_labels), layers, options);
```
这里使用ADAM优化器,最大训练轮数为100,每批训练32个样本,每轮训练后打乱数据集。训练完成后,我们可以使用测试集来评估DNN的性能:
```matlab
YTest = classify(net, test_data');
accuracy = sum(YTest == categorical(test_labels))/numel(test_labels);
disp("测试集准确率: " + accuracy);
```
这里使用classify函数对测试集进行分类,然后计算准确率。
完整的代码如下:
```matlab
load('dataset.mat'); % 加载数据集
num_samples = size(dataset,1);
num_train = floor(0.8*num_samples); % 80%的数据作为训练集
indices = randperm(num_samples);
train_indices = indices(1:num_train);
test_indices = indices(num_train+1:end);
train_data = dataset(train_indices, 1:end-1);
train_labels = dataset(train_indices, end);
test_data = dataset(test_indices, 1:end-1);
test_labels = dataset(test_indices, end);
layers = [
fullyConnectedLayer(50)
reluLayer
fullyConnectedLayer(25)
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer
];
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
'MiniBatchSize', 32, ...
'Shuffle', 'every-epoch', ...
'Plots', 'training-progress');
net = trainNetwork(train_data', categorical(train_labels), layers, options);
YTest = classify(net, test_data');
accuracy = sum(YTest == categorical(test_labels))/numel(test_labels);
disp("测试集准确率: " + accuracy);
```
阅读全文