python编程:num_producer = 3 num_consumer = 4 producer_supply = [10, 12, 9] consumer_demand = [5, 5, 11, 10] unit_cost = [[5, 8, 3, 4], [6, 7, 4, 8], [7, 6, 8, 5]] 已知运输问题 Ai为产地,ai为产地Ai的产量(i=1,2,3);Bj为销地,bj为销地Bj的销量(j=1,2,3,4);每个方格右上角数字为产地Ai运输产品到销地Bj的单位运价cij (i=1,2,3, j=1,2,3,4)。编程实现: (1)基于西北角法或最小元素法,设计实现求解该运输问题基本可行解的算法,输出该运输问题的一个基本可行解。
时间: 2023-08-19 22:36:10 浏览: 62
用Python的线程来解决生产者消费问题的示例
好的,以下是基于最小元素法的Python代码实现:
```python
num_producer = 3
num_consumer = 4
producer_supply = [10, 12, 9]
consumer_demand = [5, 5, 11, 10]
unit_cost = [[5, 8, 3, 4], [6, 7, 4, 8], [7, 6, 8, 5]]
# 初始化各个变量
allocated = [[0 for j in range(num_consumer)] for i in range(num_producer)]
i, j = 0, 0
# 循环直到所有的需求都被满足
while sum(consumer_demand) > 0:
# 找到成本最小的单元格
min_cost = float('inf')
for pi in range(num_producer):
for pj in range(num_consumer):
if producer_supply[pi] > 0 and consumer_demand[pj] > 0 and unit_cost[pi][pj] < min_cost:
min_cost = unit_cost[pi][pj]
i, j = pi, pj
# 分配产地的供应给销地
allocation = min(producer_supply[i], consumer_demand[j])
allocated[i][j] = allocation
producer_supply[i] -= allocation
consumer_demand[j] -= allocation
# 输出分配方案
print("基本可行解为:")
for i in range(num_producer):
for j in range(num_consumer):
print(allocated[i][j], end="\t")
print()
```
该算法的基本思路是,每次找到成本最小的单元格,然后将该单元格的供应分配给需求,直到所有的需求都被满足为止。在代码实现中,我们使用了一个二维数组allocated来记录每个单元格的分配情况。最终输出allocated即可得到一个基本可行解。
阅读全文