用matlab写一个cnn,二分类网络
时间: 2023-07-14 12:13:16 浏览: 103
好的,下面是一个简单的二分类CNN网络的MATLAB实现:
1. 数据准备
首先,我们需要准备训练和测试数据。这里我们使用MATLAB自带的digitDatasetMNIST数据集。读取数据集,并将其分成训练集和测试集:
```matlab
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
'nndatasets','DigitDataset');
digitData = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
% 将数据集分为训练集和测试集
[trainDigitData,testDigitData] = splitEachLabel(digitData,0.7,'randomized');
```
2. 构建CNN模型
接着,我们构建CNN模型。这里我们使用了三个卷积层和两个全连接层:
```matlab
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(5,20)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(5,50)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,100)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(500)
reluLayer
fullyConnectedLayer(2)
softmaxLayer
classificationLayer
];
```
3. 训练模型
接着,我们训练CNN模型。这里我们使用了交叉熵损失函数和Adam优化器:
```matlab
options = trainingOptions('adam', ...
'MaxEpochs',10, ...
'MiniBatchSize',128, ...
'Shuffle','every-epoch', ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(trainDigitData,layers,options);
```
4. 测试模型
最后,我们使用测试集来测试CNN模型的性能:
```matlab
YPred = classify(net,testDigitData);
YTest = testDigitData.Labels;
accuracy = sum(YPred == YTest)/numel(YTest)
```
完整代码如下:
```matlab
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
'nndatasets','DigitDataset');
digitData = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
% 将数据集分为训练集和测试集
[trainDigitData,testDigitData] = splitEachLabel(digitData,0.7,'randomized');
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(5,20)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(5,50)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,100)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(500)
reluLayer
fullyConnectedLayer(2)
softmaxLayer
classificationLayer
];
options = trainingOptions('adam', ...
'MaxEpochs',10, ...
'MiniBatchSize',128, ...
'Shuffle','every-epoch', ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(trainDigitData,layers,options);
YPred = classify(net,testDigitData);
YTest = testDigitData.Labels;
accuracy = sum(YPred == YTest)/numel(YTest)
```
希望对你有所帮助!
阅读全文