PC 机 8237A 通道 2 传送的内存起始地址为 C8020H,请给其地址寄存器编程。

时间: 2024-03-10 16:48:51 浏览: 27
8237A是Intel推出的DMA控制器,它可以通过编程来实现数据传输。在PC机中,最常用的是8237A通道2,该通道连接主机内存和外设,可以用于高速数据传输。 要设置8237A通道2传送数据,需要对其地址寄存器进行编程。地址寄存器是一个16位寄存器,用于存储内存地址。 具体编程如下: 1. 将地址寄存器的高8位和低8位分别设置为内存起始地址的高8位和低8位。 ``` mov dx, 0810h ; 将DX设置为地址寄存器的地址 mov ax, 0C802h ; 将AX设置为内存起始地址 out dx, ax ; 将AX中的值输出到地址寄存器中 ``` 在上述代码中,`dx` 寄存器中的值为地址寄存器的地址,`ax` 寄存器中的值为内存起始地址。首先将 `dx` 设置为地址寄存器的地址,然后将 `ax` 中的值输出到地址寄存器中。 2. 等待DMA控制器完成传输操作。 在向DMA控制器发出传输命令之前,需要等待DMA控制器完成前一次的传输操作。这可以通过检测DMA控制器的状态寄存器来实现。具体编程如下: ``` wait: in al, 0fh ; 从状态寄存器中读取状态值 and al, 01000000b ; 判断通道2是否空闲 jnz wait ; 如果通道2不空闲,继续等待 ``` 在上述代码中,`in al, 0fh` 从状态寄存器中读取状态值,`and al, 01000000b` 则判断通道2是否空闲,如果通道2不空闲,则继续等待。 完成上述两个步骤后,就可以开始向外设传送数据了。
相关问题

已知在IBM Pc中,使用了8088 CPU和 一片8237 DMA控制器.并用8237 DMA控制器的通2道控制软盘的读写。假没需要从软盘读取 4kb的数据,将其放入到内存起始地址为28086H的缓冲区中,采用单字节增量 方式、正常时序。请给出施满足上述要求,对8237通道2初始化程序段。

对8237 DMA控制器进行初始化,可以采取以下步骤: 1. 设置控制字寄存器(Command Word Register,CWR)。 控制字寄存器的格式为: Bit 0-2: 传输方式,01 表示单字节增量传输 Bit 3-4: 通道选择,10 表示通道 2 Bit 5-6: 存储器读写方向,01 表示写入存储器 Bit 7 : 内部/外部命令,0 表示内部命令 控制字寄存器的值为 00101001B,即 29H。 2. 设置模式寄存器(Mode Word Register,MWR)。 模式寄存器的格式为: Bit 0-1: 传输类型,00 表示单次传输 Bit 2-3: 自动初始化方式,00 表示不自动初始化 Bit 4-5: 传输方向,10 表示从外设读取数据 Bit 6-7: 传输速率,00 表示最高速率 模式寄存器的值为 00010100B,即 14H。 3. 设置外设地址寄存器(Address Register,AR)。 外设地址寄存器的值为 02H,表示使用通道 2。 4. 设置计数器寄存器(Counter Register,CR)。 计数器寄存器的值为 4096-1,即 0FFFH。 5. 设置存储器地址寄存器(Memory Address Register,MAR)。 存储器地址寄存器的值为 28086H。 6. 启动传输。 启动传输需要向命令寄存器(Command Register,CR)写入 01H。 完整的初始化程序如下: ``` MOV DX, 0D00H ; 将 8237 DMA 控制器的基址端口地址 0D00H 存入 DX MOV AL, 29H ; 控制字寄存器的值为 29H OUT DX, AL ; 将控制字寄存器的值写入 8237 DMA 控制器的基址端口 INC DX ; 选择命令字寄存器 MOV AL, 01H ; 启动 DMA 传输 OUT DX, AL ; 将命令字寄存器的值写入 8237 DMA 控制器的基址端口 DEC DX ; 选择模式字寄存器 MOV AL, 14H ; 模式寄存器的值为 14H OUT DX, AL ; 将模式寄存器的值写入 8237 DMA 控制器的基址端口 DEC DX ; 选择外设地址寄存器 MOV AL, 02H ; 外设地址寄存器的值为 02H OUT DX, AL ; 将外设地址寄存器的值写入 8237 DMA 控制器的基址端口 DEC DX ; 选择计数器寄存器 MOV AX, 0FFFH ; 计数器寄存器的值为 0FFFH OUT DX, AL ; 将计数器寄存器的低8位写入 8237 DMA 控制器的基址端口 DEC DX ; 选择计数器寄存器 MOV AL, AH ; 计数器寄存器的值为 0FFFH OUT DX, AL ; 将计数器寄存器的高8位写入 8237 DMA 控制器的基址端口 DEC DX ; 选择存储器地址寄存器 MOV AX, 28086H ; 存储器地址寄存器的值为 28086H OUT DX, AL ; 将存储器地址寄存器的低8位写入 8237 DMA 控制器的基址端口 DEC DX ; 选择存储器地址寄存器 MOV AL, AH ; 存储器地址寄存器的值为 28086H OUT DX, AL ; 将存储器地址寄存器的高8位写入 8237 DMA 控制器的基址端口 ``` 这样,就完成了对8237 DMA控制器通道2的初始化,可以开始进行DMA传输了。

编写程序:实现用通道 1 输入 8KB 的数据块,传送至内存 3000H 开始的区域(增量传送,连续传送方式,传送完毕不自动预置,DREQ 为低电平有效,DACK 为高电平有效)。 假设 8237A 的端口地址为 270H-27FH。

以下是一个简单的程序,实现了将通道 1 输入的 8KB 数据块传送至内存 3000H 开始的区域: ``` MOV DX, 270H ; 将 8237A 的端口地址 270H 存入 DX 寄存器 MOV AL, 9 ; 将 1001B 存入 AL 寄存器,表示使用通道 1、增量传送、连续传送方式、DREQ 为低电平有效、DACK 为高电平有效 OUT DX, AL ; 将 AL 寄存器中的值输出至 8237A 的端口地址 270H,选择通道 1、传输模式等参数 MOV DX, 272H ; 将 8237A 的端口地址 272H 存入 DX 寄存器,表示设置传输起始地址 MOV AX, 3000H ; 将内存地址 3000H 存入 AX 寄存器 OUT DX, AL ; 将 AL 寄存器中的低 8 位写入 8237A 端口地址 272H INC DX ; DX 指向 8237A 端口地址 273H MOV AL, AH ; 将 AX 寄存器中的高 8 位存入 AL 寄存器 OUT DX, AL ; 将 AL 寄存器中的值写入 8237A 端口地址 273H,设置传输起始地址为 3000H MOV DX, 274H ; 将 8237A 的端口地址 274H 存入 DX 寄存器,表示设置传输计数 MOV AX, 2000H ; 将 8KB 的数据块大小(2000H 字节)存入 AX 寄存器 OUT DX, AL ; 将 AL 寄存器中的低 8 位写入 8237A 端口地址 274H INC DX ; DX 指向 8237A 端口地址 275H MOV AL, AH ; 将 AX 寄存器中的高 8 位存入 AL 寄存器 OUT DX, AL ; 将 AL 寄存器中的值写入 8237A 端口地址 275H,设置传输计数为 8KB MOV DX, 27CH ; 将 8237A 的端口地址 27CH 存入 DX 寄存器,表示启动传输 IN AL, DX ; 读取 8237A 端口地址 27CH 中的值,将启动传输位清零 OR AL, 1 ; 将启动传输位置为 1,启动传输 OUT DX, AL ; 将 AL 寄存器中的值写入 8237A 端口地址 27CH,启动传输 WAIT: ; 等待传输完成 IN AL, DX ; 读取 8237A 端口地址 27CH 中的值,判断传输是否完成 AND AL, 2 ; 将传输完成位取出 JZ WAIT ; 如果传输未完成,继续等待 HLT ; 停机 ``` 需要注意的是,该程序中的地址和端口地址都是示例值,需要根据实际情况进行修改。此外,由于程序中使用了端口 I/O 操作,需要在操作系统中以特权级 0 运行。

相关推荐

最新推荐

recommend-type

I2C接口进入busy状态不能退出

最后,我们将SCL和SDA两个管脚交还给I2C接口,并通过将CR1中的SWRST位置‘1’后再清‘0’来复位I2C接口,使其退出busy状态。 I2C总线的工作原理: I2C总线是一种同步串行通信总线,使用两个信号线SCL和SDA来传输...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**
recommend-type

Python的六种数据类型

Python是一种动态类型的高级编程语言,它的六种基本数据类型包括: 1. **数字类型(Numeric Types)**:主要有整型(int)、浮点型(float)、复数型(complex)。整型用于表示整数值,浮点型用于存储小数,复数型用于处理复数。 2. **字符串类型(String Type)**:用单引号('')或双引号("")包围的文本序列,用来存储文本数据。 3. **布尔类型(Boolean Type)**:只有两个值,True和False,表示逻辑判断的结果。 4. **列表类型(List Type)**:有序的可变序列,可以包含不同类型的元素。 5. **元组类型
recommend-type

DFT与FFT应用:信号频谱分析实验

"数字信号处理仿真实验教程,主要涵盖DFT(离散傅里叶变换)和FFT(快速傅里叶变换)的应用,适用于初学者进行频谱分析。" 在数字信号处理领域,DFT(Discrete Fourier Transform)和FFT(Fast Fourier Transform)是两个至关重要的概念。DFT是将离散时间序列转换到频域的工具,而FFT则是一种高效计算DFT的方法。在这个北京理工大学的实验中,学生将通过实践深入理解这两个概念及其在信号分析中的应用。 实验的目的在于: 1. 深化对DFT基本原理的理解,这包括了解DFT如何将时域信号转化为频域表示,以及其与连续时间傅里叶变换(DTFT)的关系。DFT是DTFT在有限个等间隔频率点上的取样,这有助于分析有限长度的离散信号。 2. 应用DFT来分析信号的频谱特性,这对于识别信号的频率成分至关重要。在实验中,通过计算和可视化DFT的结果,学生可以观察信号的幅度谱和相位谱,从而揭示信号的频率组成。 3. 通过实际操作,深入理解DFT在频谱分析中的作用,以及如何利用它来解释现实世界的现象并解决问题。 实验内容分为几个部分: (1)首先,给出了一个5点序列x,通过计算DFT并绘制幅度和相位图,展示了DFT如何反映信号的幅度和相位特性。 (2)然后,使用相同序列x,但这次通过FFT进行计算,并用茎图展示结果。FFT相比于DFT提高了计算效率,尤其是在处理大数据集时。 (3)进一步扩展,序列x通过添加零填充至128点,再次进行FFT计算。这样做可以提高频率分辨率,使得频谱分析更为精确。 (4)最后,通过一个包含两种正弦波的11点序列,演示了DFT如何提供DTFT的近似,当N增大时,DFT的结果更接近于DTFT。 实验通过MATLAB代码实现,学生可以在实际操作中熟悉这些概念,从而增强对数字信号处理理论的理解。通过这些实验,学生不仅能够掌握DFT和FFT的基本运算,还能学会如何利用它们来分析和解析复杂的信号结构。